scholarly journals Gene drives in plants: opportunities and challenges for weed control and engineered resilience

2019 ◽  
Vol 286 (1911) ◽  
pp. 20191515 ◽  
Author(s):  
Luke G. Barrett ◽  
Mathieu Legros ◽  
Nagalingam Kumaran ◽  
Donna Glassop ◽  
S. Raghu ◽  
...  

Plant species, populations and communities are under threat from climate change, invasive pathogens, weeds and habitat fragmentation. Despite considerable research effort invested in genome engineering for crop improvement, the development of genetic tools for the management of wild plant populations has rarely been given detailed consideration. Gene drive systems that allow direct genetic management of plant populations via the spread of fitness-altering genetic modifications could be of great utility. However, despite the rapid development of synthetic tools and their enormous promise, little explicit consideration has been given to their application in plants and, to date, they remain untested. This article considers the potential utility of gene drives for the management of wild plant populations, and examines the factors that might influence the design, spread and efficacy of synthetic drives. To gain insight into optimal ways to design and deploy synthetic drive systems, we investigate the diversity of mechanisms underlying natural gene drives and their dynamics within plant populations and species. We also review potential approaches for engineering gene drives and discuss their potential application to plant genomes. We highlight the importance of considering the impact of plant life-history and genetic architecture on the dynamics of drive, investigate the potential for different types of resistance evolution, and touch on the ethical, regulatory and social challenges ahead.

2021 ◽  
Author(s):  
Prateek Verma ◽  
R. Guy Reeves ◽  
Samson Simon ◽  
Mathias Otto ◽  
Chaitanya S. Gokhale

AbstractGene drive technology is being presented as a means to deliver on some of the global challenges humanity faces today in healthcare, agriculture and conservation. However, there is a limited understanding of the consequences of releasing self-perpetuating transgenic organisms into the wild populations under complex ecological conditions. In this study, we analyze the impact of three factors, mate-choice, mating systems and spatial mating network, on the population dynamics for two distinct classes of modification gene drive systems; distortion and viability-based ones. All three factors had a high impact on the modelling outcome. First, we demonstrate that distortion based gene drives appear to be more robust against the mate-choice than viability-based gene drives. Second, we find that gene drive spread is much faster for higher degrees of polygamy. With fitness cost, speed is the highest for intermediate levels of polygamy. Finally, the spread of gene drive is faster and more effective when the individuals have fewer connections in a spatial mating network. Our results highlight the need to include mating complexities while modelling the population-level spread of gene drives. This will enable a more confident prediction of release thresholds, timescales and consequences of gene drive in populations.


2017 ◽  
Author(s):  
Sumit Dhole ◽  
Michael R. Vella ◽  
Alun L. Loyd ◽  
Fred Gould

AbstractRecent advances in research on gene drives have produced genetic constructs that could theoretically spread a desired gene (payload) into all populations of a species, with a single release in one place. This attribute has advantages, but also comes with risks and ethical concerns. There has been a call for research on gene drive systems that are spatially and/or temporally self-limiting. Here we use a population genetics model to compare the expected characteristics of three spatially self-limiting gene drive systems: one-locus underdominance, two-locus underdominance, and daisy-chain drives. We find large differences between these gene drives in the minimum release size required for successfully driving a payload into a population. The daisy-chain system is the most efficient, requiring the smallest release, followed by the two-locus underdominance system, and then the one-locus underdominance system. However, when the target population exchanges migrants with a non-target population, the gene drives requiring smaller releases suffer from higher risks of unintended spread. For payloads that incur relatively low fitness costs (up to 30%), a simple daisy-chain drive is practically incapable of remaining localized, even with migration rates as low as 0.5% per generation. The two-locus underdominance system can achieve localized spread under a broader range of migration rates and of payload fitness costs, while the one-locus underdominance system largely remains localized. We also find differences in the extent of population alteration and in the permanence of the alteration achieved by the three gene drives. The two-locus underdominance system does not always spread the payload to fixation, even after successful drive, while the daisy-chain system can, for a small set of parameter values, achieve a temporally-limited spread of the payload. These differences could affect the suitability of each gene drive for specific applications.Note:This manuscript has been accepted for publication in the journal Evolutionary Applications and is pending publication. We suggest that any reference to or quotation of this article should be made with this recognition.


2016 ◽  
Author(s):  
Charleston Noble ◽  
Jason Olejarz ◽  
Kevin M. Esvelt ◽  
George M. Church ◽  
Martin A. Nowak

AbstractThe alteration of wild populations has been discussed as a solution to a number of humanity’s most pressing ecological and public health concerns. Enabled by the recent revolution in genome editing, CRISPR gene drives, selfish genetic elements which can spread through populations even if they confer no advantage to their host organism, are rapidly emerging as the most promising approach. But before real-world applications are considered, it is imperative to develop a clear understanding of the outcomes of drive release in nature. Toward this aim, we mathematically study the evolutionary dynamics of CRISPR gene drives. We demonstrate that the emergence of drive-resistant alleles presents a major challenge to previously reported constructs, and we show that an alternative design which selects against resistant alleles greatly improves evolutionary stability. We discuss all results in the context of CRISPR technology and provide insights which inform the engineering of practical gene drive systems.


2016 ◽  
Author(s):  
John M. Marshall ◽  
Anna Buchman ◽  
Héctor M. Sánchez C. ◽  
Omar S. Akbari

AbstractThe use of homing-based gene drive systems to modify or suppress wild populations of a given species has been proposed as a solution to a number of significant ecological and public health related problems, including the control of mosquito-borne diseases. The recent development of a CRISPR-Cas9-based homing system for the suppression ofAnopheles gambiae, the main African malaria vector, is encouraging for this approach; however, with current designs, the slow emergence of homing-resistant alleles is expected to result in suppressed populations rapidly rebounding, as homing-resistant alleles have a significant fitness advantage over functional, population-suppressing homing alleles. To explore this concern, we develop a mathematical model to estimate tolerable rates of homing-resistant allele generation to suppress a wild population of a given size. Our results suggest that, to achieve meaningful population suppression, tolerable rates of resistance allele generation are orders of magnitude smaller than those observed for current designs for CRISPR-Cas9-based homing systems. To remedy this, we propose a homing system architecture in which guide RNAs (gRNAs) are multiplexed, increasing the effective homing rate and decreasing the effective resistant allele generation rate. Modeling results suggest that the size of the population that can be suppressed increases exponentially with the number of multiplexed gRNAs and that, with six multiplexed gRNAs, a mosquito species could potentially be suppressed on a continental scale. We also demonstrate successful multiplexingin vivoinDrosophila melanogasterusing a ribozyme-gRNA-ribozyme (RGR) approach – a strategy that could readily be adapted to engineer stable, homing-based suppression drives in relevant organisms.


2019 ◽  
Vol 286 (1914) ◽  
pp. 20191606 ◽  
Author(s):  
John Godwin ◽  
Megan Serr ◽  
S. Kathleen Barnhill-Dilling ◽  
Dimitri V. Blondel ◽  
Peter R. Brown ◽  
...  

Invasive rodents impact biodiversity, human health and food security worldwide. The biodiversity impacts are particularly significant on islands, which are the primary sites of vertebrate extinctions and where we are reaching the limits of current control technologies. Gene drives may represent an effective approach to this challenge, but knowledge gaps remain in a number of areas. This paper is focused on what is currently known about natural and developing synthetic gene drive systems in mice, some key areas where key knowledge gaps exist, findings in a variety of disciplines relevant to those gaps and a brief consideration of how engagement at the regulatory, stakeholder and community levels can accompany and contribute to this effort. Our primary species focus is the house mouse, Mus musculus , as a genetic model system that is also an important invasive pest. Our primary application focus is the development of gene drive systems intended to reduce reproduction and potentially eliminate invasive rodents from islands. Gene drive technologies in rodents have the potential to produce significant benefits for biodiversity conservation, human health and food security. A broad-based, multidisciplinary approach is necessary to assess this potential in a transparent, effective and responsible manner.


2017 ◽  
Author(s):  
Charleston Noble ◽  
Ben Adlam ◽  
George M. Church ◽  
Kevin M. Esvelt ◽  
Martin A. Nowak

AbstractRecent reports have suggested that CRISPR-based gene drives are unlikely to invade wild populations due to drive-resistant alleles that prevent cutting. Here we develop mathematical models based on existing empirical data to explicitly test this assumption. We show that although resistance prevents drive systems from spreading to fixation in large populations, even the least effective systems reported to date are highly invasive. Releasing a small number of organisms often causes invasion of the local population, followed by invasion of additional populations connected by very low gene flow rates. Examining the effects of mitigating factors including standing variation, inbreeding, and family size revealed that none of these prevent invasion in realistic scenarios. Highly effective drive systems are predicted to be even more invasive. Contrary to the National Academies report on gene drive, our results suggest that standard drive systems should not be developed nor field-tested in regions harboring the host organism.


2018 ◽  
Author(s):  
Matthew P. Edgington ◽  
Luke S. Alphey

AbstractA range of gene drive systems have been proposed that are predicted to increase their frequency and that of associated desirable genetic material even if they confer a fitness cost on individuals carrying them. Engineered underdominance (UD) is such a system and, in one version, is based on the introduction of two independently segregating transgenic constructs each carrying a lethal gene, a suppressor for the lethal at the other locus and a desirable genetic “cargo”. Under this system individuals carrying at least one copy of each construct (or no copies of either) are viable whilst those that possess just one of the transgenic constructs are non-viable. Previous theoretical work has explored various properties of these systems, concluding that they should persist indefinitely in absence of resistance or mutation. Here we study a population genetics model of UD gene drive that relaxes past assumptions by allowing for loss-of-function mutations in each introduced gene. We demonstrate that mutations are likely to cause UD systems to break down, eventually resulting in the elimination of introduced transgenes. We then go on to investigate the potential of releasing “free suppressor” carrying individuals as a new method for reversing UD gene drives and compare this to the release of wild-types; the only previously proposed reversal strategy for UD. This reveals that while free suppressor carrying individuals may represent an inexpensive reversal strategy due to extremely small release requirements, they are not able to return a fully wild-type population as rapidly as the release of wild-types.


2020 ◽  
Author(s):  
Frederik J.H. de Haas ◽  
Sarah P. Otto

1AbstractEngineered gene drive techniques for population replacement and/or suppression have potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Unfortunately, the self-propelled behavior of drives can lead to the spread of transgenic elements beyond the target population, which is concerning. Gene drive systems with a low threshold frequency for invasion, such as homing-based gene drive systems, require initially few transgenic individuals to spread and are therefore easy to implement. However their ease of spread presents a double-edged sword; their low threshold makes these drives much more susceptible to spread outside of the target population (spillover). We model a proposed drive system that transitions in time from a low threshold drive system (homing-based gene drive) to a high threshold drive system (underdominance) using daisy chain technology. This combination leads to a spatially restricted drive strategy, while maintaining an attainable release threshold. We develop and analyze a discrete-time model as proof of concept and find that this technique effectively generates stable local population suppression, while preventing the spread of transgenic elements beyond the target population under biologically realistic parameters.


2020 ◽  
Author(s):  
N. Metchanun ◽  
C. Borgemeister ◽  
J. von Braun ◽  
M. Nikolov ◽  
P. Selvaraj ◽  
...  

AbstractThe tremendous burden of malaria has led to renewed efforts on malaria elimination and the development of novel tools for application where existing tools fall short. Gene drive mosquitoes, where transgenes and their associated phenotypes are efficiently propagated to future generations, are under development to suppress vector populations or render vectors incapable of malaria transmission. However, the role of gene drives in an integrated elimination strategy is underexplored. Using a spatially explicit agent-based model of malaria transmission in the Democratic Republic of the Congo, we describe the impact of integrating a population suppression driving-Y gene drive into malaria elimination strategies. We find that as long as the driving-Y construct is extremely effective, releases of gene drive mosquitoes can eliminate malaria, and we identify a cost ceiling for gene drive to be cost-effective relative to existing tools. Vector control via gene drive is worth considering as a supplemental intervention when the construct parameters and costs are suitable.One-sentence summaryWe estimate the impact and cost-effectiveness of gene drive mosquitoes, relative to existing interventions, in malaria elimination strategies


2019 ◽  
Vol 116 (17) ◽  
pp. 8275-8282 ◽  
Author(s):  
Charleston Noble ◽  
John Min ◽  
Jason Olejarz ◽  
Joanna Buchthal ◽  
Alejandro Chavez ◽  
...  

If they are able to spread in wild populations, CRISPR-based gene-drive elements would provide new ways to address ecological problems by altering the traits of wild organisms, but the potential for uncontrolled spread tremendously complicates ethical development and use. Here, we detail a self-exhausting form of CRISPR-based drive system comprising genetic elements arranged in a daisy chain such that each drives the next. “Daisy-drive” systems can locally duplicate any effect achievable by using an equivalent self-propagating drive system, but their capacity to spread is limited by the successive loss of nondriving elements from one end of the chain. Releasing daisy-drive organisms constituting a small fraction of the local wild population can drive a useful genetic element nearly to local fixation for a wide range of fitness parameters without self-propagating spread. We additionally report numerous highly active guide RNA sequences sharing minimal homology that may enable evolutionarily stable daisy drive as well as self-propagating CRISPR-based gene drive. Especially when combined with threshold dependence, daisy drives could simplify decision-making and promote ethical use by enabling local communities to decide whether, when, and how to alter local ecosystems.


Sign in / Sign up

Export Citation Format

Share Document