Biologically inspired walking machines: design, control and perception

Author(s):  
Rüdiger Dillmann ◽  
Jan Albiez ◽  
Bernd Gaßmann ◽  
Thilo Kerscher ◽  
Marius Zöllner

This article presents a set of methods used to support the design and control of biologically inspired walking machines. Starting with a description of the general system design idea, an example for the design of the mechanical construction, a computer supported design procedure for the control architecture and the description of a three-dimensional world model to be used as knowledge base is given. The focus of this paper is on the engineering and integration process and the interrelation between the different phases of the design process.

Author(s):  
Tsunehiro Wakasugi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with a new system design method for motion and vibration control of a three-dimensional flexible shaking table. An integrated modeling and controller design procedure for flexible shaking table system is presented. An experimental three-dimensional shaking table is built. “Reduced-Order Physical Model” procedure is adopted. A state equation system model is composed and a feedback controller is designed by applying LQI control law to achieve simultaneous motion and vibration control. Adding a feedforward, two-degree-of-freedom control system is designed. Computer simulations and control experiments are carried out and the effectiveness of the presented procedure is investigated. The robustness of the system is also investigated.


Author(s):  
Haihong Zhu ◽  
Wayne J. Book

Digital Clay is a proposed novel three-dimensional computer input and output device for surface shape and haptic effects. The device consists of an array of fluidic actuators under the control of valves connected to two pressure reservoirs in a manner ultimately suitable to an implementation in MEMS technology. The challenges to build this device lie in both the kinematical structure design and the control architecture. Though it is proposed to ultimately build the actuators and control valves using MEMS technology, conventional methods are used at the current prototype stage. In this paper, several designs of the practical kinematical structure will be discussed and the proposed control architecture for the Digital Clay will be introduced.


2020 ◽  
Vol 12 (1) ◽  
pp. 703-717
Author(s):  
Yin Wei ◽  
Wang Jiaqi ◽  
Bai Xiaomin ◽  
Sun Wenjie ◽  
Zhou Zheyuan

AbstractThis article analyzes the technical difficulties in full-section backfill mining and briefly introduces the technical principle and advantages of backfilling combined with caving fully mechanized mining (BCCFM). To reveal the strata behavior law of the BCCFM workface, this work establishes a three-dimensional numerical model and designs a simulation method by dynamically updating the modulus parameter of the filling body. By the analysis of numerical simulation, the following conclusions about strata behavior of the BCCFM workface were drawn. (1) The strata behavior of the BCCFM workface shows significant nonsymmetrical characteristics, and the pressure in the caving section is higher than that in the backfilling section. φ has the greatest influence on the backfilling section and the least influence on the caving section. C has a significant influence on the range of abutment pressure in the backfilling section. (2) There exits the transition area with strong mine pressure of the BCCFM workface. φ and C have significant effect on the degree of pressure concentration but little effect on the influence range of strong mine pressure in the transition area. (3) Under different conditions, the influence range of strong mine pressure is all less than 6 m. This article puts forward a control strategy of mine pressure in the transition area, which is appropriately improving the strength of the transition hydraulic support within the influence range (6 m) in the transition area according to the pressure concentration coefficient. The field measurement value of Ji15-31010 workface was consistent with numerical simulation, which verifies the reliability of control strategy of the BCCFM workface.


2001 ◽  
Vol 10 (3) ◽  
pp. 312-330 ◽  
Author(s):  
Bernard Harper ◽  
Richard Latto

Stereo scene capture and generation is an important facet of presence research in that stereoscopic images have been linked to naturalness as a component of reported presence. Three-dimensional images can be captured and presented in many ways, but it is rare that the most simple and “natural” method is used: full orthostereoscopic image capture and projection. This technique mimics as closely as possible the geometry of the human visual system and uses convergent axis stereography with the cameras separated by the human interocular distance. It simulates human viewing angles, magnification, and convergences so that the point of zero disparity in the captured scene is reproduced without disparity in the display. In a series of experiments, we have used this technique to investigate body image distortion in photographic images. Three psychophysical experiments compared size, weight, or shape estimations (perceived waist-hip ratio) in 2-D and 3-D images for the human form and real or virtual abstract shapes. In all cases, there was a relative slimming effect of binocular disparity. A well-known photographic distortion is the perspective flattening effect of telephoto lenses. A fourth psychophysical experiment using photographic portraits taken at different distances found a fattening effect with telephoto lenses and a slimming effect with wide-angle lenses. We conclude that, where possible, photographic inputs to the visual system should allow it to generate the cyclopean point of view by which we normally see the world. This is best achieved by viewing images made with full orthostereoscopic capture and display geometry. The technique can result in more-accurate estimations of object shape or size and control of ocular suppression. These are assets that have particular utility in the generation of realistic virtual environments.


2013 ◽  
Vol 464 ◽  
pp. 253-257
Author(s):  
Hui Fang Chen

This paper takes the automatic control system of controllable pitch propeller in a multipurpose ocean tug as an example to describe the application of the S7-200 series PLC in the control system of 4500 horse power controllable pitch propeller in detail. The principle of control system is addressed, as well as the hardware configuration, the design idea of the main software and control process. The system shows high reliability, accuracy and good control performance in practical in practical running.


2013 ◽  
Vol 111 (3) ◽  
pp. 676-684 ◽  
Author(s):  
Edward J. Ciaccio ◽  
Christina A. Tennyson ◽  
Govind Bhagat ◽  
Suzanne K. Lewis ◽  
Peter H.R. Green

Author(s):  
Diego Micheli ◽  
Valentino Pediroda ◽  
Stefano Pieri

An automatic approach for the multi-objective shape optimization of microgas turbine heat exchangers is presented. According to the concept of multidisciplinary optimization, the methodology integrates a CAD parametric model of the heat transfer surfaces, a three-dimensional meshing tool, and a CFD solver, all managed by a design optimization platform. The repetitive pattern of the surface geometry has been exploited to reduce the computational domain size, and the constant flux boundary conditions have been imposed to better suit the real operative conditions. A new approach that couples cold and warm fluids in a periodic unitary cell is introduced. The effectiveness of the numerical procedure was verified comparing the numerical results with available literature data. The optimization objectives are maximizing the heat transfer rate and minimizing both friction factor and heat transfer surface. The paper presents the results of the optimization of a 50kWMGT recuperator. The design procedure can be effectively extended and applied to any industrial heat exchanger application.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


Sign in / Sign up

Export Citation Format

Share Document