Heart rate variability and the dawn of complex physiological signal analysis: methodological and clinical perspectives

Author(s):  
J. Philip Saul ◽  
Gaetano Valenza

Spontaneous beat-to-beat variations of heart rate (HR) have intrigued scientists and casual observers for centuries; however, it was not until the 1970s that investigators began to apply engineering tools to the analysis of these variations, fostering the field we now know as heart rate variability or HRV . Since then, the field has exploded to not only include a wide variety of traditional linear time and frequency domain applications for the HR signal, but also more complex linear models that include additional physiological parameters such as respiration, arterial blood pressure, central venous pressure and autonomic nerve signals. Most recently, the field has branched out to address the nonlinear components of many physiological processes, the complexity of the systems being studied and the important issue of specificity for when these tools are applied to individuals. When the impact of all these developments are combined, it seems likely that the field of HRV will soon begin to realize its potential as an important component of the toolbox used for diagnosis and therapy of patients in the clinic. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.

Author(s):  
Yuan Li ◽  
Junjie Wang ◽  
Xinyi Li ◽  
Wei Jing ◽  
Itohan Omorodion ◽  
...  

Aim: A systematic review which aims to assess the evidence regarding the function of the autonomic heart rate regulation system among Parkinson‟s disease (PD) patients. The main objective of the study is to compare heart rate variability (HRV) between those with and without PD from published studies. The subgroup analyses aimed to investigate the impact of treatment and disease duration on heart rate variability (HRV), assessed by measuring sympathetic and parasympathetic activity via low-frequency (LF) and high-frequency (HF) power spectrum scores, in patients with Parkinson‟s disease (PD). Methods: PubMed, Cochrane Library, Embase and Web of Science were searched using the keywords “Parkinson‟s disease” and “heart rate variability”. Studies that reported at least one HRV variable were included. The quality of the included studies was evaluated, and the relevant information was extracted. Then, a meta-analysis was carried out with Stata software. Results: Thirteen references (16 studies) were included in our analysis. The LF values (g -0.27; 95% confidence interval (CI) -0.53 to -0.01) of the patients with PD were lower than the controls. No significant differences in HF values (g -0.11; 95% CI -0.28 to 0.06) were observed between groups. Subgroup analyses of HRV outcomes in patients stratified by treatment status and disease duration were performed. For LF, patients with a disease duration of less than 5 years presented lower HF (g -0.25; 95% CI -0.44 to -0.06) values than controls. Regarding HF, patients receiving treatment presented lower HF (g -0.22; 95% CI -0.40 to 0.05) values than controls, and patients with a disease duration greater than 5 years also presented lower HF (g -0.29; 95% CI -0.56 to -0.03) values than controls. Discussion: We have confirmed and elaborated on the hypothesis of sympathovagal imbalance in PD. Knowledge of the effect of sympathovagal balance on HRV may inform the design of therapeutic regimens for PD. However, between-study heterogeneity and methodological issues limit the generalizability of the evidence; thus, future studies employing strict methodologies are warranted. Conclusion: Our meta-analysis found that PD is associated with reduced HRV values, which indicates that both sympathetic and vagal activity are decreased. Patients in the early stage of PD have sympathetic autonomic nerve dysfunction with only minor damage to sympathetic activity.


2018 ◽  
Vol 124 (3) ◽  
pp. 646-652 ◽  
Author(s):  
Anderson Ivan Rincon Soler ◽  
Luiz Eduardo Virgilio Silva ◽  
Rubens Fazan ◽  
Luiz Otavio Murta

Heart rate variability (HRV) analysis is widely used to investigate the autonomic regulation of the cardiovascular system. HRV is often analyzed using RR time series, which can be affected by different types of artifacts. Although there are several artifact correction methods, there is no study that compares their performances in actual experimental contexts. This work aimed to evaluate the impact of different artifact correction methods on several HRV parameters. Initially, 36 ECG recordings of control rats or rats with heart failure or hypertension were analyzed to characterize artifact occurrence rates and distributions, to be mimicked in simulations. After a rigorous analysis, only 16 recordings ( n = 16) with artifact-free segments of at least 10,000 beats were selected. RR interval losses were then simulated in the artifact-free (reference) time series according to real observations. Correction methods applied to simulated series were deletion, linear interpolation, cubic spline interpolation, modified moving average window, and nonlinear predictive interpolation. Linear (time- and frequency-domain) and nonlinear HRV parameters were calculated from corrupted-corrected time series, as well as for reference series to evaluate the accuracy of each correction method. Results show that NPI provides the overall best performance. However, several correction approaches, for example the simple deletion procedure, can provide good performance in some situations, depending on the HRV parameters under consideration. NEW & NOTEWORTHY This work analyzes the performance of some correction techniques commonly applied to the missing beats problem in RR time series. From artifact-free RR series, spurious values were inserted based on actual data of experimental settings. We intend our work to be a guide to show how artifacts should be corrected to preserve as much as possible the original heart rate variability properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adriana Leal ◽  
Mauro F. Pinto ◽  
Fábio Lopes ◽  
Anna M. Bianchi ◽  
Jorge Henriques ◽  
...  

AbstractElectrocardiogram (ECG) recordings, lasting hours before epileptic seizures, have been studied in the search for evidence of the existence of a preictal interval that follows a normal ECG trace and precedes the seizure’s clinical manifestation. The preictal interval has not yet been clinically parametrized. Furthermore, the duration of this interval varies for seizures both among patients and from the same patient. In this study, we performed a heart rate variability (HRV) analysis to investigate the discriminative power of the features of HRV in the identification of the preictal interval. HRV information extracted from the linear time and frequency domains as well as from nonlinear dynamics were analysed. We inspected data from 238 temporal lobe seizures recorded from 41 patients with drug-resistant epilepsy from the EPILEPSIAE database. Unsupervised methods were applied to the HRV feature dataset, thus leading to a new perspective in preictal interval characterization. Distinguishable preictal behaviour was exhibited by 41% of the seizures and 90% of the patients. Half of the preictal intervals were identified in the 40 min before seizure onset. The results demonstrate the potential of applying clustering methods to HRV features to deepen the current understanding of the preictal state.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph T. Marmerstein ◽  
Grant A. McCallum ◽  
Dominique M. Durand

AbstractThe vagus nerve is the largest autonomic nerve, innervating nearly every organ in the body. “Vagal tone” is a clinical measure believed to indicate overall levels of vagal activity, but is measured indirectly through the heart rate variability (HRV). Abnormal HRV has been associated with many severe conditions such as diabetes, heart failure, and hypertension. However, vagal tone has never been directly measured, leading to disagreements in its interpretation and influencing the effectiveness of vagal therapies. Using custom carbon nanotube yarn electrodes, we were able to chronically record neural activity from the left cervical vagus in both anesthetized and non-anesthetized rats. Here we show that tonic vagal activity does not correlate with common HRV metrics with or without anesthesia. Although we found that average vagal activity is increased during inspiration compared to expiration, this respiratory-linked signal was not correlated with HRV either. These results represent a clear advance in neural recording technology but also point to the need for a re-interpretation of the link between HRV and “vagal tone”.


2003 ◽  
Vol 104 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Mario VAZ ◽  
A.V. BHARATHI ◽  
S. SUCHARITA ◽  
D. NAZARETH

Alterations in autonomic nerve activity in subjects in a chronically undernourished state have been proposed, but have been inadequately documented. The present study evaluated heart rate and systolic blood pressure variability in the frequency domain in two underweight groups, one of which was undernourished and recruited from the lower socio-economic strata [underweight, undernourished (UW/UN); n = 15], while the other was from a high class of socio-economic background [underweight, well nourished (UW/WN); n = 17], as well as in normal-weight controls [normal weight, well nourished (NW/WN); n = 27]. Baroreflex sensitivity, which is a determinant of heart rate variability, was also assessed. The data indicate that total power (0–0.4Hz), low-frequency power (0.04–0.15Hz) and high-frequency power (0.15–0.4Hz) of RR interval variability were significantly lower in the UW/UN subjects (P<0.05) than in the NW/WN controls when expressed in absolute units, but not when the low- and high-frequency components were normalized for total power. Baroreflex sensitivity was similarly lower in the UW/UN group (P<0.05). Heart rate variability parameters in the UW/WN group were generally between those of the UW/UN and NW/WN groups, but were not statistically different from either. The mechanisms that contribute to the observed differences between undernourished and normal-weight groups, and the implications of these differences, remain to be elucidated.


CHEST Journal ◽  
2005 ◽  
Vol 128 (4) ◽  
pp. 277S
Author(s):  
Stavros E. Mountantonakis ◽  
Dimitrios A. Moutzouris ◽  
Craig McPherson

Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Amanda C Costa ◽  
Ana Gabriela C Silva ◽  
Cibele T Ribeiro ◽  
Guilherme A Fregonezi ◽  
Fernando A Dias

Background: Stress is one of the risk factors for cardiovascular disease and decreased heart rate variability is associated to increased mortality in some cardiac diseases. The aim of the study was to assess the impact of perceived stress on cardiac autonomic regulation in young healthy volunteers. Methods: 35 young healthy volunteers (19 to 29 years old, 6 men) from a Brazilian population were assessed for perceived stress by the translated and validated Perceived Stress Scale (PSS, 14 questions) and had the R-R intervals recorded at rest on supine position (POLAR RS800CX) and analyzed (5 minutes, Kubius HRV software) by Fast-Fourier Transform for quantification of Heart Rate Variability (HRV). Results: Average data (±SD) for age, heart rate, BMI, waist circumference and percentage of body fat (%BF) were: 21.3±2.7 years; 65.5±7.9 bpm; 22.3±1.9 Kg/m 2 ; 76.0±6.1 cm and 32.1±6.6%; respectively. The mean score for the PSS-14 was 23.5±7.2 and for the HRV parameter as follow: SSDN=54.8±21.2ms; rMSSD=55.9±32.2ms; low-frequency (LF)= 794.8±579.7ms 2 ; High-frequency (HF)= 1508.0±1783.0 ms 2 ; LF(n.u.)= 41.1±16.2; HF(n.u.)= 58.9±16.2; LF/HF=0.89±0.80 and Total power (TP)= 3151±2570ms 2 . Spearman nonparametric correlation was calculated and there was a significant correlation of PSS-14 scores and LF (ms 2 ) (r=−0.343; p= 0.044). Other HRV variables did not shown significant correlation but also had negative values for Spearman r (TP r=−0.265, p=0.124; HF r=−0.158; SSDN r=−0.207; rMSSD r=−0.243, p=0.160). LF/HF and LF(n.u.) did not correlate to PSS-14 having Spearman r very close to zero (LF/HF r=−0.007, p=0.969; LF(n.u.) r=−0.005, p=0.976). No correlation was found for HRV parameters and BMI and there was a trend for statistical correlation of %BF and LF (ms 2 ) (r=−0.309, p=0.071). Conclusions: These data demonstrate a possible association of perceived stress level and HRV at rest. Changes in LF can be a consequence of both sympathetic and parasympathetic activity, however, analyzing the other variables HF, TP, SSDN and rMSSD (all negative Spearman r) and due to the lack of changes in LF/HF ratio and LF(n.u.) we interpret that increased stress may be associated to decrease in overall heart rate variability. These changes were seen in healthy individuals and may point out an important mechanism in cardiovascular disease development.


Sign in / Sign up

Export Citation Format

Share Document