Biochemical adaptation for cold hardiness in insects

Specific biochemical adaptations permit winter survival at subzero temperatures by both freeze-tolerant and freeze-avoiding insects. Common to both survival strategies is the accumulation of high concentrations of polyols, providing deep supercooling point depression for freeze-avoiding forms and regulating cell volume reduction during extracellular freezing in freeze-tolerant insects. Studies in my laboratory have elucidated the molecular mechanisms (temperature effects on enzyme properties, allosteric regulation, reversible protein phosphorylation) that control the massive conversion of glycogen to polyols and, in some species, regulate the differential synthesis of dual polyols. New studies have highlighted the importance of aerobic ATP production for glycerol biosynthesis, suggested the importance of microcompartmentation for optimal conversion efficiency, documented seasonal changes in the capacity for polyol synthesis versus reconversion to glycogen and analysed the role of protein phosphorylation in enzyme regulation during polyol synthesis.

2021 ◽  
Vol 22 (12) ◽  
pp. 6297
Author(s):  
Isabella Panfoli ◽  
Alessandra Puddu ◽  
Nadia Bertola ◽  
Silvia Ravera ◽  
Davide Maggi

Metformin (MTF) is the first-line therapy for type 2 diabetes (T2DM). The euglycemic effect of MTF is due to the inhibition of hepatic glucose production. Literature reports that the principal molecular mechanism of MTF is the activation of 5′-AMP-activated protein kinase (AMPK) due to the decrement of ATP intracellular content consequent to the inhibition of Complex I, although this effect is obtained only at millimolar concentrations. Conversely, micromolar MTF seems to activate the mitochondrial electron transport chain, increasing ATP production and limiting oxidative stress. This evidence sustains the idea that MTF exerts a hormetic effect based on its concentration in the target tissue. Therefore, in this review we describe the effects of MTF on T2DM on the principal target organs, such as liver, gut, adipose tissue, endothelium, heart, and skeletal muscle. In particular, data indicate that all organs, except the gut, accumulate MTF in the micromolar range when administered in therapeutic doses, unmasking molecular mechanisms that do not depend on Complex I inhibition.


2021 ◽  
Vol 22 (3) ◽  
pp. 1088
Author(s):  
Weitao Jia ◽  
Maohua Ma ◽  
Jilong Chen ◽  
Shengjun Wu

Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is expected to be even more serious in many parts of the world due to climatic anomaly in the future. Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants adaptation to flooding stress at the morphological, physiological and anatomical scale systemically, such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers. Then molecular mechanisms underlying the adaptive strategies are summarized, and more than thirty identified functional genes or proteins associated with flooding-tolerance are searched out and expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant tolerance to flooding stress were collected and analyzed according to sequence similarity, which can provide references for screening flooding-tolerant genes more precisely. Finally, the potential research directions in the future were summarized and discussed. Through this review, we aim to provide references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant crops in the future.


2020 ◽  
Vol 115 (6) ◽  
Author(s):  
Fleur E. Mason ◽  
Julius Ryan D. Pronto ◽  
Khaled Alhussini ◽  
Christoph Maack ◽  
Niels Voigt

AbstractThe molecular mechanisms underlying atrial fibrillation (AF), the most common form of arrhythmia, are poorly understood and therefore target-specific treatment options remain an unmet clinical need. Excitation–contraction coupling in cardiac myocytes requires high amounts of adenosine triphosphate (ATP), which is replenished by oxidative phosphorylation in mitochondria. Calcium (Ca2+) is a key regulator of mitochondrial function by stimulating the Krebs cycle, which produces nicotinamide adenine dinucleotide for ATP production at the electron transport chain and nicotinamide adenine dinucleotide phosphate for the elimination of reactive oxygen species (ROS). While it is now well established that mitochondrial dysfunction plays an important role in the pathophysiology of heart failure, this has been less investigated in atrial myocytes in AF. Considering the high prevalence of AF, investigating the role of mitochondria in this disease may guide the path towards new therapeutic targets. In this review, we discuss the importance of mitochondrial Ca2+ handling in regulating ATP production and mitochondrial ROS emission and how alterations, particularly in these aspects of mitochondrial activity, may play a role in AF. In addition to describing research advances, we highlight areas in which further studies are required to elucidate the role of mitochondria in AF.


1991 ◽  
Vol 261 (6) ◽  
pp. R1346-R1350 ◽  
Author(s):  
J. P. Costanzo ◽  
R. E. Lee

Erythrocytes from the freeze-tolerant wood frog (Rana sylvatica) were subjected to in vitro tests of freeze tolerance, cryoprotection, and osmotic fragility. The responses of cells from frogs acclimated to 4 or 15 degrees C were similar. Erythrocytes that were frozen in saline hemolyzed at -4 degrees C or lower. The addition of high concentrations (150 and 1,500 mM) of glucose or glycerol, cryoprotectants produced naturally by freeze-tolerant frogs, significantly reduced cell injury at -8 degrees C, but concentrations of 1.5 or 15 mM were ineffective. Hemolysis was reduced by 94% with 1,500 mM glycerol and by 84% with 1,500 mM glucose; thus glycerol was the more effective cryoprotectant. Mean fragility values for frog erythrocytes incubated in hypertonic and hypotonic saline were 1,938 and 49 mosM, respectively. Survival in freeze tolerance and cryoprotection experiments was comparable for erythrocytes from frogs and humans, suggesting that these cells may respond similarly to freezing-related stresses. However, the breadth of osmotic tolerance, standardized for differences in isotonicity, was greater for frog erythrocytes than for human erythrocytes. Our data suggest that erythrocytes from R. sylvatica are adequately protected by glucose under natural conditions of freezing and thawing.


2010 ◽  
Vol 54 (4) ◽  
pp. 1555-1563 ◽  
Author(s):  
Jarrod R. Fortwendel ◽  
Praveen R. Juvvadi ◽  
B. Zachary Perfect ◽  
Luise E. Rogg ◽  
John R. Perfect ◽  
...  

ABSTRACT Attenuated activity of echinocandin antifungals at high concentrations, known as the “paradoxical effect,” is a well-established phenomenon in Candida albicans and Aspergillus fumigatus. In the yeast C. albicans, upregulation of chitin biosynthesis via the protein kinase C (PKC), high-osmolarity glycerol response (HOG), and Ca2+/calcineurin signaling pathways is an important cell wall stress response that permits growth in the presence of high concentrations of echinocandins. However, nothing is known of the molecular mechanisms regulating the mold A. fumigatus and its paradoxical response to echinocandins. Here, we show that the laboratory strain of A. fumigatus and five of seven clinical A. fumigatus isolates tested display various magnitudes of paradoxical growth in response to caspofungin. Interestingly, none of the eight strains showed paradoxical growth in the presence of micafungin or anidulafungin. Treatment of the ΔcnaA and ΔcrzA strains, harboring gene deletions of the calcineurin A subunit and the calcineurin-dependent transcription factor, respectively, with high concentrations of caspofungin revealed that the A. fumigatus paradoxical effect is calcineurin pathway dependent. Exploring a molecular role for CnaA in the compensatory chitin biosynthetic response, we found that caspofungin treatment resulted in increased chitin synthase gene expression, leading to a calcineurin-dependent increase in chitin synthase activity. Taken together, our data suggest a mechanistic role for A. fumigatus calcineurin signaling in the chitin biosynthetic response observed during paradoxical growth in the presence of high-dose caspofungin treatment.


1988 ◽  
Vol 66 (9) ◽  
pp. 1723-1728 ◽  
Author(s):  
Michio Suzuki ◽  
H. G. Nass

Eight winter wheat, one triticale, and three fall rye cultivars with mean lethal temperature (LT50) values from −5.5 to −20.0 °C were harvested in late November and analyzed for fructans. Fructose, sucrose, and oligofructans with a degree of polymerization (DP) of 6 or lower were found in all cultivars. The concentration of DP 4 fructan was higher than that of DP 5 in winter wheat and triticale, while the opposite trend was found in fall rye. Fructans with a DP of 7 or higher (high DP fructans) were found at high concentrations in hardy winter wheat and fall rye. The high DP fructan was very low or negligible in the least hardy winter wheat cultivar 'Super X'. Fructans in winter cereals consisted mainly of inulin type with a β-2-1 linkage. The activity of phlein sucrase, which catalyzes synthesis of phlein, was much lower in winter cereals compared with phlein-rich grasses. It was concluded that high DP fructans of inulin type in basal top tissues of winter cereals were more closely associated with freezing resistance than low DP fructans.


Reproduction ◽  
2021 ◽  
Vol 161 (5) ◽  
pp. 523-537
Author(s):  
Shi-Yu An ◽  
Zi-Fei Liu ◽  
El-Samahy M A ◽  
Ming-Tian Deng ◽  
Xiao-Xiao Gao ◽  
...  

Long ncRNAs regulate a complex array of fundamental biological processes, while its molecular regulatory mechanism in Leydig cells (LCs) remains unclear. In the present study, we established the lncRNA LOC102176306/miR-1197-3p/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) regulatory network by bioinformatic prediction, and investigated its roles in goat LCs. We found that lncRNA LOC102176306 could efficiently bind to miR-1197-3p and regulate PPARGC1A expression in goat LCs. Downregulation of lncRNA LOC102176306 significantly supressed testosterone (T) synthesis and ATP production, decreased the activities of antioxidant enzymes and mitochondrial complex I and complex III, caused the loss of mitochondrial membrane potential, and inhibited the proliferation of goat LCs by decreasing PPARGC1A expression, while these effects could be restored by miR-1197-3p inhibitor treatment. In addition, miR-1197-3p mimics treatment significantly alleviated the positive effects of lncRNA LOC102176306 overexpression on T and ATP production, antioxidant capacity and proliferation of goat LCs. Taken together, lncRNA LOC102176306 functioned as a sponge for miR-1197-3p to maintain PPARGC1A expression, thereby affecting the steroidogenesis, cell proliferation and oxidative stress of goat LCs. These findings extend our understanding of the molecular mechanisms of T synthesis, cell proliferation and oxidative stress of LCs.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 735 ◽  
Author(s):  
Vaishali Aggarwal ◽  
Hardeep Tuli ◽  
Ayşegül Varol ◽  
Falak Thakral ◽  
Mukerrem Yerer ◽  
...  

Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.


2020 ◽  
Vol 26 (2) ◽  
pp. 287-296
Author(s):  
Kyung-Tae Shin ◽  
Zheng-Wen Nie ◽  
Wenjun Zhou ◽  
Dongjie Zhou ◽  
Ju-Yeon Kim ◽  
...  

AbstractConnexin 43 (CX43) is a component of gap junctions. The lack of functional CX43 induces oxidative stress, autophagy, and apoptosis in somatic cells. However, the role of CX43 in the early development of porcine embryos is still unknown. Thus, the aim of this study was to investigate the role of CX43, and its underlying molecular mechanisms, on the developmental competence of early porcine embryos. We performed CX43 knockdown by microinjecting dsRNA into parthenogenetically activated porcine parthenotes. The blastocyst development rate and the total number of cells in the blastocysts were significantly reduced by CX43 knockdown. Results from FITC-dextran assays showed that CX43 knockdown significantly increased membrane permeability. ZO-1 protein was obliterated in CX43 knockdown blastocysts. Mitochondrial membrane potential and ATP production were significantly reduced following CX43 knockdown. Reactive oxygen species (ROS) levels were significantly increased in the CX43 knockdown group compared to those in control embryos. Moreover, CX43 knockdown induced autophagy and apoptosis. Our findings indicate that CX43 is essential for the development and preimplantation of porcine embryos and maintains mitochondrial function, cell junction structure, and cell homeostasis by regulating membrane permeability, ROS generation, autophagy, and apoptosis in early embryos.


Dose-Response ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 155932582091004
Author(s):  
Ainy Zehra ◽  
Muhammad Zaffar Hashmi ◽  
Abdul Majid Khan ◽  
Tariq Malik ◽  
Zaigham Abbas

The polychlorinated biphenyls (PCBs) are persistent and their dose-dependent toxicities studies are not well-established. In this study, cytotoxic and genotoxic effects of PCB150 and PCB180 in HeLa cells were studied. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that the cell proliferation was stimulated at low doses (10−3 and 10−2 µg/mL for 12, 24, 48, and 72 hours) and inhibited at high doses (10 and 15 µg/mL for 24, 48, and 72 hours) for both PCBs. Increase in reactive oxygen species formation was observed in the HeLa cells in a time- and dose-dependent manner. Malondialdehyde and superoxide dismutase showed increased levels at high concentrations of PCBs over the time. Glutathione peroxidase expression was downregulated after PCBs exposure, suggested that both PCB congeners may attributable to cytotoxicity. Comet assay elicited a significant increase in genotoxicity at high concentrations of PCBs as compared to low concentrations indicating genotoxic effects. PCB150 and PCB180 showed decrease in the activity of extracellular signal–regulated kinase 1/2 and c-Jun N-terminal kinase at high concentrations after 12 and 48 hours. These findings may contribute to understanding the mechanism of PCBs-induced toxicity, thereby improving the risk assessment of toxic compounds in humans.


Sign in / Sign up

Export Citation Format

Share Document