scholarly journals Speciation in Ficedula flycatchers

2010 ◽  
Vol 365 (1547) ◽  
pp. 1841-1852 ◽  
Author(s):  
Anna Qvarnström ◽  
Amber M. Rice ◽  
Hans Ellegren

Speciation in animals often requires that population divergence goes through three major evolutionary stages, i.e. ecological divergence, development of sexual isolation and the build-up of genetic incompatibility. There is theoretical consensus regarding favourable conditions required for speciation to reach its final and irreversible stage, but empirical tests remain rare. Here, we review recent research on processes of speciation, based on studies in hybrid zones between collared ( Ficedula albicollis ) and pied flycatchers ( Ficedula hypoleuca ). A major advantage of this study system is that questions concerning all three major sources of reproductive isolation and their interconnections can be addressed. We conclude that (i) ecological divergence is caused by divergence in life-history traits, (ii) females prefer mates of their own species based on differences in both plumage and song characteristics, (iii) male plumage characteristics have diverged but their song has converged in sympatry, (iv) there is genetic incompatibility in accordance with Haldane's rule, and (v) the Z-chromosome appears to be a hotspot for genes involved in sexual isolation and genetic incompatibility. We discuss how identification of the genes underlying the three major sources of reproductive isolation can be used to draw conclusions about links between the processes driving their evolution.

1967 ◽  
Vol 24 (8) ◽  
pp. 1637-1692 ◽  
Author(s):  
D. W. Hagen

A systematic examination was made of isolating mechanisms, as set out by Mayr, that might serve to maintain reproductive isolation between the marine (trachurus) and the freshwater (leiurus) threespine sticklebacks. Field work was conducted in a small British Columbia coastal stream, the Little Campbell River, for[Formula: see text] years and complemented with laboratory experiments. Other streams were included late in the investigation. Leiurus permanently occupies the upper reaches of the stream; trachurus is anadromous and enters the lower reaches to breed in freshwater. Between the breeding grounds of the two, where numbers of both are greatly reduced, hybridization occurs. But it is restricted to a narrow zone.The two species are easily distinguished. Thus, morphological analysis provided firm circumstantial evidence that hybrids are plentiful and that backcrossing occurs, predominately to leiurus. Hybridization was confirmed by rearing offspring under uniform conditions in the laboratory with crosses in all combinations. Such offspring were also used to demonstrate considerable genetic divergence (much of it polygenetic) between leiurus and trachurus.Behavioural experiments demonstrated the absence of ethological isolation and hybrids performed courtship and parental care normally.Nor was genetic incompatibility found in the reared hybrids (F1's or backcrosses); all were vigourous. Seasonal isolation is only partially developed with early spawning migrants of trachurus making a major contribution to hybridization (in the Little Campbell River).Since behavioural and genetic blocks to hybridization are not present, there is no means to prevent hybridization where leiurus and trachurus come together. However, coexistence between the two species is very low. Evidence from observation and experiment in the field and from preference tests showed that ecological isolation is a very powerful barrier to hybridization. The two species show numerous adaptations to the distinctly different habitats they frequent, and each shows a strong affinity for its own habitat. In localities with intermediate or contiguous habitats, coexistence and interbreeding occur. Hybridization is a function of the environment.No selection against hybrids could be detected within the hybrid zone (or with laboratory reared hybrids); yet, one is forced to assume that it is present outside the zone. The very narrow zones as well as the reversed cline that were found indicate there is intense selection against hybrids. What these selective forces are remains to be found. Hybrid zones will probably continue to be poorly understood until a critical analysis of hybrid inferiority is made.Genotypes of either species that remain in the hybrid zone are at a strong selective disadvantage. Hence, reinforcement of ecological isolation probably occurs, and Moore's criticism concerning the spread of such reinforced genotypes would not apply to such cases. Mayr distinguishes between pre- and postmating mechanisms stating that the mode of operation of natural selection will be different for the two. But in threespine sticklebacks one premating mechanism (ecological isolation) and one postmating mechanism (hybrid inferiority) cannot be distinguished. This is so because ecological isolation is the cause of hybrid inferiority.Leiurus and trachurus are reproductively isolated, have well developed isolating mechanisms, and exhibit considerable genetic divergence. The two, then, fulfill the species definition of Mayr. There is no evidence that introgression occurs. Indeed a reversed cline showing a progressive increase in morphological divergence between the two species as the hybrid zone is approached together with the narrow hybrid zone demonstrates that selection severely restricts gene flow. Collections and observations from other streams corroborate those from the study area. Reproductive isolation between leiurus and trachurus seems to be widespread, throughout their range.


2017 ◽  
Author(s):  
Sean F. Ryan ◽  
Michael C. Fontaine ◽  
J. Mark Scriber ◽  
Michael E. Pfrender ◽  
Shawn T. O’Neil ◽  
...  

AbstractHybrid zones are a valuable tool for studying the process of speciation and for identifying the genomic regions undergoing divergence and the ecological (extrinsic) and non-ecological (intrinsic) factors involved. Here, we explored the genomic and geographic landscape of divergence in a hybrid zone between Papilio glaucus and Papilio canadensis. Using a genome scan of 28,417 ddRAD SNPs, we identified genomic regions under possible selection and examined their distribution in the context of previously identified candidate genes for ecological adaptations. We showed that differentiation was genome-wide, including multiple candidate genes for ecological adaptations, particularly those involved in seasonal adaptation and host plant detoxification. The Z-chromosome and four autosomes showed a disproportionate amount of differentiation, suggesting genes on these chromosomes play a potential role in reproductive isolation. Cline analyses of significantly differentiated genomic SNPs, and of species diagnostic genetic markers, showed a high degree of geographic coincidence (81%) and concordance (80%) and were associated with the geographic distribution of a climate-mediated developmental threshold (length of the growing season). A relatively large proportion (1.3%) of the outliers for divergent selection were not associated with candidate genes for ecological adaptations and may reflect the presence of previously unrecognized intrinsic barriers between these species. These results suggest that exogenous (climate-mediated) and endogenous (unknown) clines may have become coupled and act together to reinforce reproductive isolation. This approach of assessing divergence across both the genomic and geographic landscape can provide insight about the interplay between the genetic architecture of reproductive isolation and endogenous and exogenous selection.


Author(s):  
Erik Nelson ◽  
Qian Cong ◽  
Nick Grishin

Comparisons of genomes from recently diverged butterfly populations along a suture zone in central Texas have revealed high levels of divergence on the Z chromosome relative to autosomes, as measured by fixation index, $F_{st}$. The pattern of divergence appears to result from accumulation of incompatible alleles, obstructing introgression on the Z chromosome in hybrids. However, it is unknown whether this mechanism is sufficient to explain the data. Here, we simulate the effects of hybrid incompatibility on interbreeding butterfly populations using a model in which populations accumulate cross–incompatible alleles in allopatry prior to contact. We compute statistics for introgression and population divergence during contact between model butterfly populations and compare them to statistics obtained for 15 pairs of butterfly species interbreeding along the Texas suture zone. For populations that have evolved sufficiently in allopatry, the model exhibits high levels of divergence on the Z chromosome relative to autosomes in populations interbreeding on time scales comparable to periods of interglacial contact between butterfly populations in central Texas.Levels of divergence on the Z chromosome increase when interacting groups of genes are closely linked, consistent with interacting clusters of functionally related genes in butterfly genomes. Results for various periods in allopatry are in qualitative agreement with the pattern of data for butterflies, supporting a picture of speciation in which populations are subjected to cycles of divergence in glacial isolation, and partial fusion during interglacial contact.


2013 ◽  
Author(s):  
Nicola Nadeau ◽  
Mayte Ruiz ◽  
Patricio Salazar ◽  
Brian Counterman ◽  
Jose Alejandro Medina ◽  
...  

Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on colour pattern. The co-mimetic species H. erato and H. melpomene have parallel hybrid zones where both species undergo a change from one colour pattern form to another. We use restriction associated DNA sequencing to obtain several thousand genome wide sequence markers and use these to analyse patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data; alignment to a reference genome and de novo assembly, and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ~15% divergent) related to the reference sequence. Our results confirm that the colour pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to colour pattern differences. We also use association mapping to identify previously unmapped colour pattern loci, in particular the Ro locus. Finally, we identify within our sample a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti.


2021 ◽  
Author(s):  
Tianzhu Xiong ◽  
James L MALLET

Genetic incompatibility has long been considered to be a hallmark of speciation due to its role in reproductive isolation. Previous analyses of the stability of epistatic incompatibility show that it is subject to collapse upon hybridization. In the present work, we derive explicitly the distribution of the lifespan of two-locus incompatibilities, and show that genetic drift, along with recombination, is critical in determining the time scale of collapse. The first class of incompatibilities, where derived alleles separated in parental populations act antagonistically in hybrids, survive longer in smaller populations when incompatible alleles are (co)dominant and tightly linked, but collapse more quickly when they are recessive. The second class of incompatibilities, where fitness is reduced by disrupting co-evolved elements in gene regulation systems, collapse on a time scale proportional to the exponential of effective recombination rate. Overall, our result suggests that the effects of genetic drift and recombination on incompatibility's lifespan depend strongly on the underlying mechanisms of incompatibilities. As the time scale of collapse is usually shorter than the time scale of establishing a new incompatibility, the observed level of genetic incompatibilities in a particular hybridizing population may be shaped more by the collapse than by their initial accumulation. Therefore, a joint theory of accumulation-erosion of incompatibilities is in need to fully understand the genetic process under speciation with hybridization.


2018 ◽  
Vol 285 (1874) ◽  
pp. 20172081 ◽  
Author(s):  
Paola Pulido-Santacruz ◽  
Alexandre Aleixo ◽  
Jason T. Weir

We possess limited understanding of how speciation unfolds in the most species-rich region of the planet—the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia.


2020 ◽  
Vol 375 (1806) ◽  
pp. 20190540 ◽  
Author(s):  
Henry L. North ◽  
Pierre Caminade ◽  
Dany Severac ◽  
Khalid Belkhir ◽  
Carole M. Smadja

Reinforcement has the potential to generate strong reproductive isolation through the evolution of barrier traits as a response to selection against maladaptive hybridization, but the genetic changes associated with this process remain largely unexplored. Building upon the increasing evidence for a role of structural variants in adaptation and speciation, we addressed the role of copy-number variation in the reinforcement of sexual isolation evidenced between the two European subspecies of the house mouse. We characterized copy-number divergence between populations of Mus musculus musculus that display assortative mate choice, and those that do not, using whole-genome resequencing data. Updating methods to detect deletions and tandem duplications (collectively: copy-number variants, CNVs) in Pool-Seq data, we developed an analytical pipeline dedicated to identifying genomic regions showing the expected pattern of copy-number displacement under a reinforcement scenario. This strategy allowed us to detect 1824 deletions and seven tandem duplications that showed extreme differences in frequency between behavioural classes across replicate comparisons. A subset of 480 deletions and four tandem duplications were specifically associated with the derived trait of assortative mate choice. These ‘Choosiness-associated’ CNVs occur in hundreds of genes. Consistent with our hypothesis, such genes included olfactory receptors potentially involved in the olfactory-based assortative mate choice in this system as well as one gene, Sp110 , that is known to show patterns of differential expression between behavioural classes in an organ used in mate choice—the vomeronasal organ. These results demonstrate that fine-scale structural changes are common and highly variable within species, despite being under-studied, and may be important targets of reinforcing selection in this system and others. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.


Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 849-852 ◽  
Author(s):  
B. N. Singh ◽  
Sujata Chatterjee

To test whether character displacement for reproductive isolation between Drosophila bipectinata and Drosophila malerkotliana exists, the degree of sexual isolation was measured between their sympatric and allopatric populations. Although the isolation indices vary in different crosses, the average isolation index for sympatric populations is very close to that for allopatric populations. This shows no difference in the degree of sexual isolation between sympatric and allopatric populations of D. bipectinata and D. malerkotliana. Thus there is no evidence for the existence of character displacement for sexual isolation between these two closely related sympatric species.Key words: Drosophila bipectinata, Drosophila malerkotliana, sexual isolation, sympatric and allopatric populations.


2012 ◽  
Vol 367 (1587) ◽  
pp. 439-450 ◽  
Author(s):  
Zachariah Gompert ◽  
Thomas L. Parchman ◽  
C. Alex Buerkle

Hybrid zones are common in nature and can offer critical insights into the dynamics and components of reproductive isolation. Hybrids between diverged lineages are particularly informative about the genetic architecture of reproductive isolation, because introgression in an admixed population is a direct measure of isolation. In this paper, we combine simulations and a new statistical model to determine the extent to which different genetic architectures of isolation leave different signatures on genome-level patterns of introgression. We found that reproductive isolation caused by one or several loci of large effect caused greater heterogeneity in patterns of introgression than architectures involving many loci with small fitness effects, particularly when isolating factors were closely linked. The same conditions that led to heterogeneous introgression often resulted in a reasonable correspondence between outlier loci and the genetic loci that contributed to isolation. However, demographic conditions affected both of these results, highlighting potential limitations to the study of the speciation genomics. Further progress in understanding the genomics of speciation will require large-scale empirical studies of introgression in hybrid zones and model-based analyses, as well as more comprehensive modelling of the expected levels of isolation with different demographies and genetic architectures of isolation.


2020 ◽  
Vol 375 (1806) ◽  
pp. 20190541 ◽  
Author(s):  
Moritz Muschick ◽  
Víctor Soria-Carrasco ◽  
Jeffrey L. Feder ◽  
Zach Gompert ◽  
Patrik Nosil

Simpson's fossil-record inspired model of ‘adaptive zones’ proposes that evolution is dominated by small fluctuations within adaptive zones, occasionally punctuated by larger shifts between zones. This model can help explain why the process of population divergence often results in weak or moderate reproductive isolation (RI), rather than strong RI and distinct species. Applied to the speciation process, the adaptive zones hypothesis makes two inter-related predictions: (i) large shifts between zones are relatively rare, (ii) when large shifts do occur they generate stronger RI than shifts within zones. Here, we use ecological, phylogenetic and behavioural data to test these predictions in Timema stick insects. We show that host use in Timema is dominated by moderate shifts within the systematic divisions of flowering plants and conifers, with only a few extreme shifts between these divisions. However, when extreme shifts occur, they generate greater RI than do more moderate shifts. Our results support the adaptive zones model, and suggest that the net contribution of ecological shifts to diversification is dependent on both their magnitude and frequency. We discuss the generality of our findings in the light of emerging evidence from diverse taxa that the evolution of RI is not always the only factor determining the origin of species diversity. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.


Sign in / Sign up

Export Citation Format

Share Document