scholarly journals Dynamics of diet-egg transfer of fatty acids in the teleost fish, red drum ( Sciaenops ocellatus )

2020 ◽  
Vol 375 (1804) ◽  
pp. 20190646 ◽  
Author(s):  
Zhenxin Hou ◽  
Cynthia K. Faulk ◽  
Lee A. Fuiman

Eggs of marine organisms are increasingly being recognized as important components of marine food webs. The degree to which egg fatty acid profiles reflect maternal diet fatty acid profiles, and therefore the value of fatty acids in eggs as trophic biomarkers, depends on the species' reproductive strategy and the extent of modification of ingested fatty acids. We measured the dynamics of transfer of recently ingested fatty acids to spawned eggs in a batch-spawning teleost, red drum ( Sciaenops ocellatus ). Results of 21 diet-shift experiments, from which the fatty acid profiles of the diets and eggs were compared, showed that 15 of 27 fatty acids measured (one saturated, two monounsaturated and 12 polyunsaturated fatty acids) in eggs were correlated with their levels in the recent diet, and the rate of incorporation into eggs was proportional to the magnitude of the diet shift. Large shifts in diet might occur naturally during spawning migrations or when prey communities vary over time. Results of this study indicate that fatty acids in red drum eggs can be useful for studying adult diet and exploring trophic linkages in marine systems. This article is part of the theme issue ‘The next horizons for lipids as ‘trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.

2013 ◽  
Vol 9 (5) ◽  
pp. 20130593 ◽  
Author(s):  
Lee A. Fuiman ◽  
Cynthia K. Faulk

Fatty acid composition of eggs affects development, growth and ecological performance of fish embryos and larvae, with potential consequences for recruitment success. Essential fatty acids in eggs derive from the maternal diet, and the time between ingestion and deposition in eggs is ecologically important but unknown. We examined the dynamics of diet–egg transfer of arachidonic acid (ARA) in the batch-spawning fish, red drum ( Sciaenops ocellatus ), by measuring ARA concentrations in eggs after a single diet shift and during a period of irregular variations in diet. ARA concentrations in eggs changed within 2–16 days of a diet shift. The rate of change was proportional to the magnitude of the shift, with no evidence of equilibration. These results are not consistent with eggs being assembled entirely from accumulated body stores. The immediate source of ARA in eggs appears to be the recent diet. We propose that batch spawning produces rapid diet–egg transfer of ARA because it removes large amounts of fatty acids from the body and prevents equilibration. The immediacy of the diet–egg connection suggests that spawning migration combined with short-interval batch spawning may have evolved to take advantage of nutrients critical for offspring survival that are available at the spawning site.


1989 ◽  
Vol 69 (3) ◽  
pp. 813-817 ◽  
Author(s):  
E. R. FARNWORTH ◽  
J. K. G. KRAMER

Sows were fed a control diet or one with added tallow or soybean oil during gestation. Sow and fetal blood plasma fatty acids were determined at 57, 85 and 110 d gestation. The sow plasma fatty acid pattern, particularly 18:2n-6, was influenced by diet, but showed little change during gestation. High levels of polyunsaturated fatty acids, especially 18:2n-6 and 20:4n-6, were found in sow plasma. Fetal blood fatty acids were not directly influenced by maternal diet, but showed changes as gestation progressed. In the fetal plasma, 20:4n-6 was the major long chain polyunsaturated fatty acid, but in addition, high levels of 22:6n-3 were also found. The percent n-6 fatty acids were in higher concentrations than the n-3 fatty acids in both maternal and fetal plasma. Key words: Fetus, blood, fatty acids, swine


1994 ◽  
Vol 72 (4) ◽  
pp. 555-566 ◽  
Author(s):  
Margaretha A. Haugen ◽  
Jens Kjeldsen-Kragh ◽  
Kristian S. Bjervea ◽  
Arne T. Høstmark ◽  
Øystein Førre

In a controlled clinical trial we have recently shown that patients with rheumatoid arthritis (RA) improved after fasting for 7–10 d and that the improvement could be sustained through 3.5 months with a vegan, diet and 9 months with a lactovegetarian diet. Other studies have indicated that the inflammatory process in R A can be reduced through manipulation of dietary fatty acids. A switch to a vegetarian diet significantly alters the intake of fatty acids. Therefore, we have analysed the changes in fatty acid profiles of the plasma phospholipid fraction and related these changes to disease activity. The concentrations of the fatty acids 20: 3n-6 and 20: 4n-6 were significantly reduced after 3.5 months with a vegan diet (P < 0.0001 and P < 0.01 respectively), but the concentration increased to baseline values with a lactovegetarian diet. The concentration of 20: 5n-3 was significantly reduced after the vegan diet (P < 0.0001) and the lactovegetarian diet periods (P < 0.01). There was no significant difference in fatty acid concentrations between diet responders and diet non-responders after the vegan or lactovegetarian diet periods. Our results indicate that the changes in the fatty acid profiles cannot explain the clinical improvement.


1997 ◽  
Vol 1997 ◽  
pp. 65-65
Author(s):  
G.E. Onibi ◽  
J.R. Scaife ◽  
I. Murray

Biological subcellular membranes (mitochondria and microsome) contain relatively large amounts of phospholipids which are rich in unsaturated fatty acids (UFA) and are readily susceptible to lipid peroxidation. Thus, it is believed that peroxidative changes in meat is initiated at the membrane level. Monahan et al. (1990) have shown that these membranes are particularly rich in α-tocopherol (AT), hence, the effects of increased dietary supply of α-tocopheryl acetate (ATA) and UFA (from full-fat rapeseed; FFR) on AT content, fatty acid profiles and peroxidative changes in porcine mitochondrial and microsomal fractions were studied.


2019 ◽  
Author(s):  
L Chavarie ◽  
J. Hoffmann ◽  
A.M. Muir ◽  
C.C. Krueger ◽  
C.R. Bronte ◽  
...  

AbstractFatty acids are well-established biomarkers used to characterize trophic ecology, food-web linkages, and the ecological niche of many different taxa. Most often, fatty acids that are examined include only those previously identified as “dietary” or “extended dietary” biomarkers. Fatty acids considered as non-dietary biomarkers, however, represent numerous fatty acids that can be extracted. Some studies may include non-dietary fatty acids (i.e., combined with dietary fatty acids), but do not specifically assess them, whereas in other studies, these data are discarded. In this study, we explored whether non-dietary biomarkers fatty acids can provide worthwhile information by assessing their ability to discriminate intraspecific diversity within and between lakes. Non-dietary fatty acids used as biomarkers delineated variation among regions, among locations within a lake, and among ecotypes within a species. Physiological differences that arise from differences in energy processing can be adaptive and linked to habitat use by a species’ ecotypes, and likely explains why non-dietary fatty acids biomarkers can be a relevant tool to delineate intraspecific diversity. Little is known about the non-dietary-mediated differences in fatty acid composition, but our results showed that non-dietary fatty acids biomarkers can be useful tool in identifying variation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hung Van Le ◽  
Don Viet Nguyen ◽  
Quang Vu Nguyen ◽  
Bunmi Sherifat Malau-Aduli ◽  
Peter David Nichols ◽  
...  

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 319-319
Author(s):  
Carrie James ◽  
Sandra L Rodriguez-Zas ◽  
Maria R C de Godoy

Abstract There is evidence that algae can be a sustainable alternative of omega-3 polyunsaturated fatty acids (w-3 PUFA; DHA and EPA) in the diets of felines, but more information is needed to determine bioavailability of algal w-3 PUFAs in felines. Therefore, the objective of this study was to determine the effects of dietary supplementation of algae DHA on plasma and red blood cell (RBC) membrane fatty acid profiles and fecal microbiota of adult cats. A complete randomized design was utilized with thirty female and male adult cats (mean age: 1.8 ± 0.03 yr, mean BW: 4.5 ± 0.8 kg) which were fed an assigned diet for 90 d. Three diets were formulated with poultry fat alone or inclusion of 2% fish oil or 2% algae DHA meal. Blood samples were collected after fasting on 0, 30, 60 and 90 d to be analyzed for plasma and red blood cell fatty acid profiles. A fresh fecal sample was collected within 15 min of defecation from each cat to be analyzed for fecal microbiota. Illumina 16S rRNA sequencing from V4 region was completed using MiSeq and analyzed using QIIME 2. Plasma and RBC fatty acid concentrations at baseline were similar among all cats and treatment groups. However, dietary treatment had a significant effect on the concentrations of several fatty acids in plasma and RBC over time. Plasma and RBC concentrations of DHA were greater (P &lt; 0.05) for cats fed the algal DHA diet compared to the control and fish oil diets. Conversely, plasma and RBC concentrations of EPA did not differ among treatments when analyzed as a change from baseline. Beta- and alpha-diversity did not differ among treatments, indicating that 2% fish oil or algal-DHA meal does alter fecal microbiota of cats in contrast with cats fed a poultry fat-based diet.


2020 ◽  
Vol 15 (1) ◽  
pp. 606-618 ◽  
Author(s):  
Dani Dordevic ◽  
Ivan Kushkevych ◽  
Simona Jancikova ◽  
Sanja Cavar Zeljkovic ◽  
Michal Zdarsky ◽  
...  

AbstractThe aim of this study was to simulate olive oil use and to monitor changes in the profile of fatty acids in home-made preparations using olive oil, which involve repeated heat treatment cycles. The material used in the experiment consisted of extra virgin and refined olive oil samples. Fatty acid profiles of olive oil samples were monitored after each heating cycle (10 min). The outcomes showed that cycles of heat treatment cause significant (p < 0.05) differences in the fatty acid profile of olive oil. A similar trend of differences (p < 0.05) was found between fatty acid profiles in extra virgin and refined olive oils. As expected, the main differences occurred in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Cross-correlation analysis also showed differences between the fatty acid profiles. The most prolific changes were observed between the control samples and the heated (at 180°C) samples of refined olive oil in PUFAs, though a heating temperature of 220°C resulted in similar decrease in MUFAs and PUFAs, in both extra virgin and refined olive oil samples. The study showed differences in fatty acid profiles that can occur during the culinary heating of olive oil. Furthermore, the study indicated that culinary heating of extra virgin olive oil produced results similar to those of the refined olive oil heating at a lower temperature below 180°C.


Sign in / Sign up

Export Citation Format

Share Document