scholarly journals Computational validity: using computation to translate behaviours across species

Author(s):  
A. David Redish ◽  
Adam Kepecs ◽  
Lisa M. Anderson ◽  
Olivia L. Calvin ◽  
Nicola M. Grissom ◽  
...  

We propose a new conceptual framework (computational validity) for translation across species and populations based on the computational similarity between the information processing underlying parallel tasks. Translating between species depends not on the superficial similarity of the tasks presented, but rather on the computational similarity of the strategies and mechanisms that underlie those behaviours. Computational validity goes beyond construct validity by directly addressing questions of information processing. Computational validity interacts with circuit validity as computation depends on circuits, but similar computations could be accomplished by different circuits. Because different individuals may use different computations to accomplish a given task, computational validity suggests that behaviour should be understood through the subject's point of view; thus, behaviour should be characterized on an individual level rather than a task level. Tasks can constrain the computational algorithms available to a subject and the observed subtleties of that behaviour can provide information about the computations used by each individual. Computational validity has especially high relevance for the study of psychiatric disorders, given the new views of psychiatry as identifying and mediating information processing dysfunctions that may show high inter-individual variability, as well as for animal models investigating aspects of human psychiatric disorders. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.

Author(s):  
Joseph E. LeDoux

It is often said that fear is a universal innate emotion that we humans have inherited from our mammalian ancestors by virtue of having inherited conserved features of their nervous systems. Contrary to this common sense-based scientific point of view, I have argued that what we have inherited from our mammalian ancestors, and they from their distal vertebrate ancestors, and they from their chordate ancestors, and so forth, is not a fear circuit. It is, instead, a defensive survival circuit that detects threats, and in response, initiates defensive survival behaviours and supporting physiological adjustments. Seen in this light, the defensive survival circuits of humans and other mammals can be conceptualized as manifestations of an ancient survival function—the ability to detect danger and respond to it—that may in fact predate animals and their nervous systems, and perhaps may go back to the beginning of life. Fear, on the other hand, from my perspective, is a product of cortical cognitive circuits. This conception is not just of academic interest. It also has practical implications, offering clues as to why efforts to treat problems related to fear and anxiety are not more effective, and what might make them better. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


Author(s):  
I. R. Khuzina ◽  
V. N. Komarov

The paper considers a point of view, based on the conception of the broad understanding of taxons. According to this point of view, rhyncholites of the subgenus Dentatobeccus and Microbeccus are accepted to be synonymous with the genus Rhynchoteuthis, and subgenus Romanovichella is considered to be synonymous with the genus Palaeoteuthis. The criteria, exercising influence on the different approaches to the classification of rhyncholites, have been analyzed (such as age and individual variability, sexual dimorphism, pathological and teratological features, degree of disintegration of material), underestimation of which can lead to inaccuracy. Divestment of the subgenuses Dentatobeccus, Microbeccus and Romanovichella, possessing very bright morphological characteristics, to have an independent status and denomination to their synonyms, has been noted to be unjustified. An artificial system (any suggested variant) with all its minuses is a single probable system for rhyncholites. The main criteria, minimizing its negative sides and proving the separation of the new taxon, is an available mass-scale material. The narrow understanding of the genus, used in sensible limits, has been underlined to simplify the problem of the passing the view about the genus to the other investigators and recognition of rhyncholites for the practical tasks.


2020 ◽  
Vol 375 (1796) ◽  
pp. 20190319 ◽  
Author(s):  
Claus C. Hilgetag ◽  
Alexandros Goulas

Concepts shape the interpretation of facts. One of the most popular concepts in systems neuroscience is that of ‘hierarchy’. However, this concept has been interpreted in many different ways, which are not well aligned. This observation suggests that the concept is ill defined. Using the example of the organization of the primate visual cortical system, we explore several contexts in which ‘hierarchy’ is currently used in the description of brain networks. We distinguish at least four different uses, specifically, ‘hierarchy’ as a topological sequence of projections, as a gradient of features, as a progression of scales, or as a sorting of laminar projection patterns. We discuss the interpretation and functional implications of the different notions of ‘hierarchy’ in these contexts and suggest that more specific terms than ‘hierarchy’ should be used for a deeper understanding of the different dimensions of the organization of brain networks. This article is part of the theme issue ‘Unifying the essential concepts of biological networks: biological insights and philosophical foundations’.


2021 ◽  
Vol 23 (1) ◽  
pp. 62-80
Author(s):  
Laura Järvi

In the context of the Finnish welfare state, this article examines the role of occupational welfare in the interplay between public and occupational sickness benefits from 1947 to 2016, to analyse how the two sickness benefits have interacted over time and the role occupational welfare has played in sickness provision. Previous research has noted that occupational benefits may support or compensate for the much-debated declining welfare state. Hence, it is important to acquire greater knowledge about the public-occupational interplay. The study uses in-depth individual-level analysis from a retrospective point of view, which has been rare in previous research, and examines the public-occupational interplay in the Finnish sickness benefit system from the first national collective agreements to 2016. Based on the reforms made to the public system, the article identifies and utilises six different phases of the Finnish sickness allowance system in the main analysis. The institutional development of sickness provision is investigated by analysing the compensation rate and benefit period, using metalworkers as a representative example of blue-collar workers. The results indicate that occupational benefits are strongly institutionalised in the Finnish sickness benefit system. The interplay between statutory and occupational sickness benefits has taken different forms over time, and occupational benefits have been re-negotiated as the statutory system has been reformed. The article provides valuable information on the historical development and relevance of occupational welfare, in terms of not only understanding its significance for individuals but also comprehending the logic of the interplay in the public-private mix of welfare provision.


1983 ◽  
Vol 17 (4) ◽  
pp. 307-318 ◽  
Author(s):  
H. G. Stampfer

This article suggests that the potential usefulness of event-related potentials in psychiatry has not been fully explored because of the limitations of various approaches to research adopted to date, and because the field is still undergoing rapid development. Newer approaches to data acquisition and methods of analysis, combined with closer co-operation between medical and physical scientists, will help to establish the practical application of these signals in psychiatric disorders and assist our understanding of psychophysiological information processing in the brain. Finally, it is suggested that psychiatrists should seek to understand these techniques and the data they generate, since they provide more direct access to measures of complex cerebral processes than current clinical methods.


2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
João Gentil

Abstract Background In 2019, WHO classified vaccine hesitancy as one of the top 10 threats to global health. Vaccination is an area of excellence in nursing that has gained a new focus and has become a challenge in the provision of care and in the management field. Vaccine hesitation raises questions about mandatory vaccination, individual versus collective freedom that are highlighted in the current context due to the emergence of new vaccines. In this paper, we want to analyze and update knowledge about vaccines hesitancy from an ethical and bioethical perspective. Methods A combination of literature reviews on vaccine refusal/hesitancy, ethics and COVID-19 vaccine confidence, accessed on SciELO and PubMed databases and analysis of documents from General Directorate of Health and Ordem dos Enfermeiros (National Nurses Association). Results Vaccination programs aim is a collective protection. The desirable effects at individual level do not have the same ethical value at collective level, leading to cost-benefit imbalances. Moral conflicts between the individual and the collective, cost-benefit imbalances and the insufficiency of bioethics principles, lead us to the use of other moral values and principles, such as responsibility, solidarity and social justice, as a tool for ethical reflection problems related to COVID-19 vaccines. Conclusions There are no perfect solutions to ethical dilemmas and some optimal solutions could depend the context. In a pandemic situation, one of the most relevant ethical issues is the herd immunity since it leaves public health at risk. Equity and the principle of justice in vaccination campaign are shown daily in the nursing profession.


2005 ◽  
Vol 15 (01n02) ◽  
pp. 129-135 ◽  
Author(s):  
MITSUO YOSHIDA ◽  
YASUAKI KUROE ◽  
TAKEHIRO MORI

Recently models of neural networks that can directly deal with complex numbers, complex-valued neural networks, have been proposed and several studies on their abilities of information processing have been done. Furthermore models of neural networks that can deal with quaternion numbers, which is the extension of complex numbers, have also been proposed. However they are all multilayer quaternion neural networks. This paper proposes models of fully connected recurrent quaternion neural networks, Hopfield-type quaternion neural networks. Since quaternion numbers are non-commutative on multiplication, some different models can be considered. We investigate dynamics of these proposed models from the point of view of the existence of an energy function and derive their conditions for existence.


Learning takes place if there is a repeat of stimuli, or otherwise, extinction occurs, which is forgetting. To make the consumers learn the product and not lose sight for a long time is a primary focus for marketers. It means that marketers are more concerned about individuals' information storage and retrieval process. This chapter discusses the information-processing system, parts of this system, and forgetting as well as memorizing. At the end of the chapter, memory is evaluated from the point of view of marketing.


2019 ◽  
Vol 374 (1774) ◽  
pp. 20180380 ◽  
Author(s):  
C. C. Wood

The goal of this article is to call attention to, and to express caution about, the extensive use of computation as an explanatory concept in contemporary biology. Inspired by Dennett's ‘intentional stance’ in the philosophy of mind, I suggest that a ‘computational stance’ can be a productive approach to evaluating the value of computational concepts in biology. Such an approach allows the value of computational ideas to be assessed without being diverted by arguments about whether a particular biological system is ‘actually computing’ or not. Because there is sufficient difference of agreement among computer scientists about the essential elements that constitute computation, any doctrinaire position about the application of computational ideas seems misguided. Closely related to the concept of computation is the concept of information processing. Indeed, some influential computer scientists contend that there is no fundamental difference between the two concepts. I will argue that despite the lack of widely accepted, general definitions of information processing and computation: (1) information processing and computation are not fully equivalent and there is value in maintaining a distinction between them and (2) that such value is particularly evident in applications of information processing and computation to biology.This article is part of the theme issue ‘Liquid brains, solid brains: How distributed cognitive architectures process information’.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 739 ◽  
Author(s):  
Elisa Frasnelli ◽  
Giorgio Vallortigara

Lateralization, i.e., the different functional roles played by the left and right sides of the brain, is expressed in two main ways: (1) in single individuals, regardless of a common direction (bias) in the population (aka individual-level lateralization); or (2) in single individuals and in the same direction in most of them, so that the population is biased (aka population-level lateralization). Indeed, lateralization often occurs at the population-level, with 60–90% of individuals showing the same direction (right or left) of bias, depending on species and tasks. It is usually maintained that lateralization can increase the brain’s efficiency. However, this may explain individual-level lateralization, but not population-level lateralization, for individual brain efficiency is unrelated to the direction of the asymmetry in other individuals. From a theoretical point of view, a possible explanation for population-level lateralization is that it may reflect an evolutionarily stable strategy (ESS) that can develop when individually asymmetrical organisms are under specific selective pressures to coordinate their behavior with that of other asymmetrical organisms. This prediction has been sometimes misunderstood as it is equated with the idea that population-level lateralization should only be present in social species. However, population-level asymmetries have been observed in aggressive and mating displays in so-called “solitary” insects, suggesting that engagement in specific inter-individual interactions rather than “sociality” per se may promote population-level lateralization. Here, we clarify that the nature of inter-individuals interaction can generate evolutionarily stable strategies of lateralization at the individual- or population-level, depending on ecological contexts, showing that individual-level and population-level lateralization should be considered as two aspects of the same continuum.


Sign in / Sign up

Export Citation Format

Share Document