scholarly journals Delivery of antibacterial silver nanoclusters to Pseudomonas aeruginosa using species-specific DNA aptamers

2020 ◽  
Vol 69 (4) ◽  
pp. 640-652 ◽  
Author(s):  
Jennifer Soundy ◽  
Darren Day

Introduction. The use of silver as an antimicrobial therapeutic is limited by its toxicity to host cells compared with that required to kill bacterial pathogens. Aim. To use aptamer targeting of DNA scaffolded silver nanoclusters as an antimicrobial agent for treating Pseudomonas aeruginosa infections. Methodology. Antimicrobial activity was assessed in planktonic cultures and in vivo using an invertebrate model of infection. Results. The aptamer conjugates that we call aptabiotics have potent antimicrobial activity. Targeted silver nanoclusters were more effective at killing P. aeruginosa than the equivalent quantity of untargeted silver nanoclusters. The aptabiotics have an IC50 of 1.3–2.6 µM against planktonically grown bacteria. Propidium iodide staining showed that they rapidly depolarize bacterial cells to kill approximately 50 % of the population within 10 min following treatment. In vivo testing in the Galleria mellonella model of infection prolonged survival from an otherwise lethal infection. Conclusion. Using P. aeruginosa as a model, we show that targeting of DNA-scaffolded silver nanoclusters with an aptamer has effective fast-acting antimicrobial activity in vitro and in an in vivo animal model.

2020 ◽  
Vol 69 (4) ◽  
pp. 492-504
Author(s):  
Gabriel Torrens ◽  
Maria Escobar-Salom ◽  
Antonio Oliver ◽  
Carlos Juan

Pseudomonas aeruginosa is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen’s biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against P. aeruginosa . All the published studies were considered, from both in vitro and in vivo fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain P. aeruginosa targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.


Microbiology ◽  
2021 ◽  
Vol 167 (8) ◽  
Author(s):  
Selene García-Reyes ◽  
Dina A. Moustafa ◽  
Ina Attrée ◽  
Joanna B. Goldberg ◽  
Sara E. Quiroz-Morales ◽  
...  

Pseudomonas aeruginosa is a wide-spread γ-proteobacterium that produces the biosurfactant rhamnolipid that has a great commercial value due to excellent properties of low toxicity and high biodegradability. However, this bacterium is an opportunist pathogen that constitutes an important health hazard due to its production of virulence-associated traits and its high antibiotic resistance. Thus, it is highly desirable to have a non-virulent P. aeruginosa strain for rhamnolipid production. It has been reported that strain ATCC 9027 is avirulent in mouse models of infection, and it is still able to produce rhamnolipid. Thus, it has been proposed to be suitable for it industrial production, since it encodes a defective LasR quorum sensing (QS) transcriptional regulator that is the head of this regulatory network. However, the restoration of virulence factor production by overexpression of rhlR (the gene encoding a QS-transcriptional regulator which is under the transcriptional control of LasR) is not sufficient to restore its virulence in mice. It is desirable to obtain a deeper understanding of ATCC 9027 attenuated-virulence phenotype and to assess the safety of this strain to be used at an industrial scale. In this work we determined whether increasing the expression of the pore-forming toxin encoded by the exlBA operon in strain ATCC 9027 had an impact on its virulence using Galleria mellonella and mouse models of infections. We increased the expression of the exlBA operon by overexpressing from a plasmid its transcriptional activator Vfr or of the Vfr ligand cyclic AMP produced by CyaB. We found that in G. mellonella ATCC 9027/pUCP24-vfr and ATCC 9027/pUCP24-cyaB gained a virulent phenotype, but these strains remained avirulent in murine models of P. aeruginosa infection. These results reinforce the possibility of using ATCC 9027 for industrial biosurfactants production.


Microbiology ◽  
2021 ◽  
Vol 167 (3) ◽  
Author(s):  
Sathi Mallick ◽  
Shanti Kiran ◽  
Tapas Kumar Maiti ◽  
Anindya S. Ghosh

Escherichia coli low-molecular-mass (LMM) Penicillin-binding proteins (PBPs) help in hydrolysing the peptidoglycan fragments from their cell wall and recycling them back into the growing peptidoglycan matrix, in addition to their reported involvement in biofilm formation. Biofilms are external slime layers of extra-polymeric substances that sessile bacterial cells secrete to form a habitable niche for themselves. Here, we hypothesize the involvement of Escherichia coli LMM PBPs in regulating the nature of exopolysaccharides (EPS) prevailing in its extra-polymeric substances during biofilm formation. Therefore, this study includes the assessment of physiological characteristics of E. coli CS109 LMM PBP deletion mutants to address biofilm formation abilities, viability and surface adhesion. Finally, EPS from parent CS109 and its ΔPBP4 and ΔPBP5 mutants were purified and analysed for sugars present. Deletions of LMM PBP reduced biofilm formation, bacterial adhesion and their viability in biofilms. Deletions also diminished EPS production by ΔPBP4 and ΔPBP5 mutants, purification of which suggested an increased overall negative charge compared with their parent. Also, EPS analyses from both mutants revealed the appearance of an unusual sugar, xylose, that was absent in CS109. Accordingly, the reason for reduced biofilm formation in LMM PBP mutants may be speculated as the subsequent production of xylitol and a hindrance in the standard flow of the pentose phosphate pathway.


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


Microbiology ◽  
2020 ◽  
Vol 166 (5) ◽  
pp. 484-497 ◽  
Author(s):  
Alejandra Arteaga Ide ◽  
Victor M. Hernández ◽  
Liliana Medina-Aparicio ◽  
Edson Carcamo-Noriega ◽  
Lourdes Girard ◽  
...  

In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.


2020 ◽  
Vol 69 (4) ◽  
pp. 521-529 ◽  
Author(s):  
Matthew E. Wand ◽  
J. Mark Sutton

Introduction. Colistin is a last resort antibiotic for treating infections caused by carbapenem-resistant isolates. Mechanisms of resistance to colistin have been widely described in Klebsiella pneumoniae and Escherichia coli but have yet to be characterized in Citrobacter and Enterobacter species. Aim. To identify the causative mutations leading to generation of colistin resistance in Citrobacter and Enterobacter spp. Methodology. Colistin resistance was generated by culturing in increasing concentrations of colistin or by direct culture in a lethal (above MIC) concentration. Whole-genome sequencing was used to identify mutations. Fitness of resistant strains was determined by changes in growth rate, and virulence in Galleria mellonella. Results. We were able to generate colistin resistance upon exposure to sub-MIC levels of colistin, in several but not all strains of Citrobacter and Enterobacter resulting in a 16-fold increase in colistin MIC values for both species. The same individual strains also developed resistance to colistin after a single exposure at 10× MIC, with a similar increase in MIC. Genetic analysis revealed that this increased resistance was attributed to mutations in PmrB for Citrobacter and PhoP in Enterobacter , although we were not able to identify causative mutations in all strains. Colistin-resistant mutants showed little difference in growth rate, and virulence in G. mellonella, although there were strain-to-strain differences. Conclusions. Stable colistin resistance may be acquired with no loss of fitness in these species. However, only select strains were able to adapt suggesting that acquisition of colistin resistance is dependent upon individual strain characteristics.


Author(s):  
Jiao Huang ◽  
Ying Huang

A novel filamentous Actinobacterium, designated strain FXJ1.1311T, was isolated from soil collected in Ngari (Ali) Prefecture, Qinghai-Tibet Plateau, western PR China. The strain showed antimicrobial activity against Gram-positive bacteria and Fusarium oxysporum. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FXJ1.1311T belonged to the genus Lentzea and showed the highest sequence similarity to Lentzea guizhouensis DHS C013T (98.04%). Morphological and chemotaxonomic characteristics supported its assignment to the genus Lentzea . The genome-wide average nucleotide identity between strain FXJ1.1311T and L. guizhouensis DHS C013T as well as other Lentzea type strains was <82.2 %. Strain FXJ1.1311T also formed a monophyletic line distinct from the known Lentzea species in the phylogenomic tree. In addition, physiological and chemotaxonomic characteristics allowed phenotypic differentiation of the novel strain from L. guizhouensis . Based on the evidence presented here, strain FXJ1.1311T represents a novel species of the genus Lentzea , for which the name Lentzea tibetensis sp. nov. is proposed. The type strain is FXJ1.1311T (=CGMCC 4.7383T=DSM 104975T).


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Zhaojun Zheng ◽  
Nagendran Tharmalingam ◽  
Qingzhong Liu ◽  
Elamparithi Jayamani ◽  
Wooseong Kim ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Genevieve Johnson ◽  
Alan J. Wolfe ◽  
Catherine Putonti

Bacteriophages (phages) are vital members of the human microbiota. They are abundant even within low biomass niches of the human body, including the lower urinary tract. While several prior studies have cultured bacteria from kidney stones, this is the first study to explore phages within the kidney stone microbiota. Here we report Dobby, a temperate phage isolated from a strain of Pseudomonas aeruginosa cultured from a kidney stone. Dobby is capable of lysing clinical P. aeruginosa strains within our collection from the urinary tract. Sequencing was performed producing a 37 152 bp genome that closely resembles the temperate P. aeruginosa phage φCTX, a member of the P2 phage group. Dobby does not, however, encode for the cytotoxin CTX. Dobby’s genome was queried against publicly available bacterial sequences identifying 44 other φCTX-like prophages. These prophages are integrated within the genomes of P. aeruginosa strains from a variety of environments, including strains isolated from urine samples and other niches of the human body. Phylogenetic analysis suggests that the temperate φCTX phage species is widespread. With the isolation of Dobby, we now have evidence that phages are members of the kidney stone microbiota. Further investigation, however, is needed to determine their abundance and diversity within these communities.


Microbiology ◽  
2020 ◽  
Vol 166 (3) ◽  
pp. 296-305 ◽  
Author(s):  
Tsaone Tamuhla ◽  
Lydia Joubert ◽  
Danicke Willemse ◽  
Monique J. Williams

Iron-sulphur (FeS) clusters are versatile cofactors required for a range of biological processes within cells. Due to the reactive nature of the constituent molecules, assembly and delivery of these cofactors requires a multi-protein machinery in vivo. In prokaryotes, SufT homologues are proposed to function in the maturation and transfer of FeS clusters to apo-proteins. This study used targeted gene deletion to investigate the role of SufT in the physiology of mycobacteria, using Mycobacterium smegmatis as a model organism. Deletion of the sufT gene in M. smegmatis had no impact on growth under standard culture conditions and did not significantly alter activity of the FeS cluster dependent enzymes succinate dehydrogenase (SDH) and aconitase (ACN). Furthermore, the ΔsufT mutant was no more sensitive than the wild-type strain to the redox cycler 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), or the anti-tuberculosis drugs isoniazid, clofazimine or rifampicin. In contrast, the ΔsufT mutant displayed a growth defect under iron limiting conditions, and an increased requirement for iron during biofilm formation. This data suggests that SufT is an accessory factor in FeS cluster biogenesis in mycobacteria which is required under conditions of iron limitation.


Sign in / Sign up

Export Citation Format

Share Document