scholarly journals Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for time-critical situations

2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Bert Bogaerts ◽  
Raf Winand ◽  
Julien Van Braekel ◽  
Stefan Hoffman ◽  
Nancy H. C. Roosens ◽  
...  

Whole genome sequencing (WGS) has become the reference standard for bacterial outbreak investigation and pathogen typing, providing a resolution unattainable with conventional molecular methods. Data generated with Illumina sequencers can however only be analysed after the sequencing run has finished, thereby losing valuable time during emergency situations. We evaluated both the effect of decreasing overall run time, and also a protocol to transfer and convert intermediary files generated by Illumina sequencers enabling real-time data analysis for multiple samples part of the same ongoing sequencing run, as soon as the forward reads have been sequenced. To facilitate implementation for laboratories operating under strict quality systems, extensive validation of several bioinformatics assays (16S rRNA species confirmation, gene detection against virulence factor and antimicrobial resistance databases, SNP-based antimicrobial resistance detection, serotype determination, and core genome multilocus sequence typing) for three bacterial pathogens ( Mycobacterium tuberculosis , Neisseria meningitidis , and Shiga-toxin producing Escherichia coli ) was performed by evaluating performance in function of the two most critical sequencing parameters, i.e. read length and coverage. For the majority of evaluated bioinformatics assays, actionable results could be obtained between 14 and 22 h of sequencing, decreasing the overall sequencing-to-results time by more than half. This study aids in reducing the turn-around time of WGS analysis by facilitating a faster response in time-critical scenarios and provides recommendations for time-optimized WGS with respect to required read length and coverage to achieve a minimum level of performance for the considered bioinformatics assay(s), which can also be used to maximize the cost-effectiveness of routine surveillance sequencing when response time is not essential.

Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


Author(s):  
Emeli Månsson ◽  
Thor Bech Johannesen ◽  
Åsa Nilsdotter-Augustinsson ◽  
Bo Söderquist ◽  
Marc Stegger

There is increased awareness of the worldwide spread of specific epidemic multidrug-resistant (MDR) lineages of the human commensal Staphylococcus epidermidis . Here, using bioinformatic analyses accounting for population structure, we determined genomic traits (genes, SNPs and k-mers) that distinguish S. epidermidis causing prosthetic-joint infections (PJIs) from commensal isolates from nares, by analysing whole-genome sequencing data from S. epidermidis from PJIs prospectively collected over 10 years in Sweden, and contemporary S. epidermidis from the nares of patients scheduled for arthroplasty surgery. Previously suggested virulence determinants and the presence of genes and mutations linked to antimicrobial resistance (AMR) were also investigated. Publicly available S. epidermidis sequences were used for international extrapolation and validation of findings. Our data show that S. epidermidis causing PJIs differed from nasal isolates not by virulence but by traits associated with resistance to compounds used in prevention of PJIs: β-lactams, aminoglycosides and chlorhexidine. Almost a quarter of the PJI isolates did not belong to any of the previously described major nosocomial lineages, but the AMR-related traits were also over-represented in these isolates, as well as in international S. epidermidis isolates originating from PJIs. Genes previously associated with virulence in S. epidermidis were over-represented in individual lineages, but failed to reach statistical significance when adjusted for population structure. Our findings suggest that the current strategies for prevention of PJIs select for nosocomial MDR S. epidermidis lineages that have arisen from horizontal gene transfer of AMR-related traits into multiple genetic backgrounds.


Author(s):  
Luís Guilherme de Araújo Longo ◽  
Herrison Fontana ◽  
Viviane Santos de Sousa ◽  
Natalia Chilinque Zambão da Silva ◽  
Ianick Souto Martins ◽  
...  

Klebsiella pneumoniae causes a diversity of infections in both healthcare and community settings. This pathogen is showing an increased ability to accumulate antimicrobial resistance and virulence genes, making it a public health concern. Here we describe the whole-genome sequence characteristics of an ST15 colistin-resistant K. pneumoniae isolate obtained from a blood culture of a 79-year-old female patient admitted to a university hospital in Brazil. Kp14U04 was resistant to most clinically useful antimicrobial agents, remaining susceptible only to aminoglycosides and fosfomycin. The colistin resistance in this isolate was due to a ~1.3 kb deletion containing four genes, namely mgrB, yebO, yobH and the transcriptional regulator kdgR. The study isolate presented a variety of antimicrobial resistance genes, including the carbapenemase-encoding gene bla KPC-2, the extended-spectrum beta-lactamase (ESBL)-encoding gene bla SHV-28 and the beta-lactamase-encoding gene bla OXA-1. Additionally, Kp14U04 harboured a multiple stress resistance protein, efflux systems and regulators, heavy metal resistance and virulence genes, plasmids, prophage-related sequences and genomic islands. These features revealed the high potential of this isolate to resist antimicrobial therapy, survive in adverse environments, cause infections and overcome host defence mechanisms.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


Author(s):  
Aleksandra Trościańczyk ◽  
Aneta Nowakiewicz ◽  
Sebastian Gnat ◽  
Dominik Łagowski ◽  
Marcelina Osińska ◽  
...  

Introduction. The possible transfer of antimicrobial resistance genes between Enterococcus faecium isolates from humans and different animal species, including those not covered by monitoring programs (e.g. pet and wildlife), poses a serious threat to public health. Hypothesis/Gap Statement. Little is known about occurrence and mechanisms of phenomenon of multidrug resistance of E. faecium isolated from various host species in Poland. Aim. The aim of the study was to characterize multidrug-resistant E. faecium isolated from humans and animals (livestock, pets and wildlife) in terms of the occurrence of genetic markers determining resistance. Methodology. Bacterial isolates were tested for phenotypic resistance and the presence of genes encoding resistance to macrolides, tetracycline, aminoglycosides, aminocyclitols and phenicols as well as efflux pump (emeA), resolvase (tndX) and integrase (Int-Tn) genes. The quinolone resistance-determining regions of gyrA and parC were sequenced. Results. Human isolates of E. faecium were characterized by high-level resistance to: ciprofloxacin, enrofloxacin, erythromycin (100 %), as well, as aminoglycosides resistance (kanamycin – 100%, streptomycin – 78 %, gentamicin – 78%). Regardless of the animal species, high level of resistance of E. faecium to tetracycline (from 88–100 %), erythromycin (from 82–94 %) and kanamycin (from 36–100 %) was observed. All E. faecium isolates from wildlife were resistant to fluoroquinolones. However, full susceptibility to vancomycin was observed in all isolates tested. Phenotypic antimicrobial resistance of E. faecium was identified in the presence of the following resistance genes: erm(B) (70%), msr(A) (50 %), tet(L) (35 %), tet(K) (34 %), tet(M) (76 %), aac(6’)-Ie-aph(2″)-Ia (25%), ant(6)-Ia (31%), aph(3)-IIIa (68 %), (tndX) (23 %), and integrase gene (Int-Tn) (34 %). A correlation between an amino acid substitution at positions 83 and 87 of gyrA and position 80 of parC and the high-level fluoroquinolone resistance in E. faecium has been observed as well. Conclusion. The level and range of antimicrobial resistance and the panel of resistance determinants is comparable between E. faecium isolates, despite host species.


2020 ◽  
Vol 69 (4) ◽  
pp. 537-547 ◽  
Author(s):  
Daniela Ceccarelli ◽  
Ayla Hesp ◽  
Jeanet van der Goot ◽  
Philip Joosten ◽  
Steven Sarrazin ◽  
...  

The aim of this article is to report on antimicrobial resistance (AMR) in commensal Escherichia coli from livestock from several European countries. The relationships with antimicrobial usage (AMU) at country level and harmonized indicators to cover the most relevant AMR aspects for human health in animal production were also investigated. E. coli were isolated in faeces from broilers and fattening pigs (from nine countries), and fattening turkeys and veal calves (from three countries) and screened against a fixed antimicrobial panel. AMU data were collected at farm and average treatment incidences stratified by antimicrobial class, country and livestock species were calculated. Associations between AMR and AMU at country level were analysed. Independent of animal species, the highest resistance was observed for ampicillin, sulphamethoxazole, tetracycline and trimethoprim. E. coli from broilers showed the highest resistance level for (fluoro)quinolones, and multidrug resistance peaked in broilers and fattening turkeys. Colistin resistance was observed at very low levels with the exception of fattening turkeys. High resistance to third- and fourth-generation cephalosporins was detected in broilers and fattening turkeys. The lowest levels of resistance were for meropenem, azithromycin and tigecycline (<1 %). Significant correlations between resistance and usage at country level were detected in broilers for polymyxins and aminoglycosides, and in fattening pigs for cephalosporins, amphenicols, fluoroquinolones and polymyxins. None of the correlations observed between AMR and AMU were statistically significant for fattening turkey and veal calves. The strength of the analysis performed here is the correlation of aggregated data from the same farms at country level for both AMU and AMR within antimicrobial classes.


2020 ◽  
Vol 69 (3) ◽  
pp. 478-486
Author(s):  
Joycelyn Ho ◽  
Min Zhao ◽  
Samuel Wojcik ◽  
George Taiaroa ◽  
Margi Butler ◽  
...  

Introduction. Pseudomonas syringae pv. actinidiae (Psa) has emerged as a major bacterial pathogen of kiwifruit cultivation throughout the world. Aim. We aim to introduce a CRISPR–Cas9 system, a commonly used genome editing tool, into Psa. The protocols may also be useful in other Pseudomonas species. Methodology. Using standard molecular biology techniques, we modified plasmid pCas9, which carries the CRISPR–Cas9 sequences from Streptococcus pyogenes, for use in Psa. The final plasmid, pJH1, was produced in a series of steps and is maintained with selection in both Escherichia coli and Psa. Results. We have constructed plasmids carrying a CRISPR–Cas9 system based on that of S. pyogenes , which can be maintained, under selection, in Psa. We have shown that the gene targeting capacity of the CRISPR–Cas9 system is active and that the Cas9 protein is able to cleave the targeted sites. The Cas9 was directed to several different sites in the P. syringae genome. Using Cas9 we have generated Psa transformants that no longer carry the native plasmid present in Psa, and other transformants that lack the integrative, conjugative element, Pac_ICE1. Targeting of a specific gene, a chromosomal non-ribosomal peptide synthetase, led to gene knockouts with the transformants having deletions encompassing the target site. Conclusion. We have constructed shuttle plasmids carrying a CRISPR–Cas9 system that are maintained in both E. coli and P. syringae pv. actinidiae. We have used this gene editing system to eliminate features of the accessory genome (plasmids or ICEs) from Psa and to target a single chromosomal gene.


2020 ◽  
Author(s):  
Gerald Tegha ◽  
Emily J. Ciccone ◽  
Robert Krysiak ◽  
James Kaphatika ◽  
Tarsizio Chikaonda ◽  
...  

Antimicrobial resistance (AMR) is a global threat, including in sub-Saharan Africa. However, little is known about the genetics of resistant bacteria in the region. In Malawi, there is growing concern about increasing rates of antimicrobial resistance to most empirically used antimicrobials. The highly drug resistant Escherichia coli sequence type (ST) 131, which is associated with the extended spectrum β-lactamase blaCTX-M-15 , has been increasing in prevalence globally. Previous data from isolates collected between 2006 and 2013 in southern Malawi have revealed the presence of ST131 and the blaCTX-M-15 gene in the country. We performed whole genome sequencing (WGS) of 58 clinical E. coli isolates at Kamuzu Central Hospital, a tertiary care centre in central Malawi, collected from 2012 to 2018. We used Oxford Nanopore Technologies (ONT) sequencing, which was performed in Malawi. We show that ST131 is observed more often (14.9% increasing to 32.8%) and that the blaCTX-M-15 gene is occurring at a higher frequency (21.3% increasing to 44.8%). Phylogenetics indicates that isolates are highly related between the central and southern geographic regions and confirms that ST131 isolates are contained in a single group. All AMR genes, including blaCTX-M-15 , were widely distributed across sequence types. We also identified an increased number of ST410 isolates, which in this study tend to carry a plasmid-located copy of blaCTX-M-15 gene at a higher frequency than blaCTX-M-15 occurs in ST131. This study confirms the expanding nature of ST131 and the wide distribution of the blaCTX-M-15 gene in Malawi. We also highlight the feasibility of conducting longitudinal genomic epidemiology studies of important bacteria with the sequencing done on site using a nanopore platform that requires minimal infrastructure.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
John Maina ◽  
Perpetual Ndung’u ◽  
Anne Muigai ◽  
John Kiiru

Objective. This cross-sectional study conducted in Kibera, Kenya, sought to gain insights on relative microbial contamination levels of popular unprocessed food types, determine antimicrobial resistance (AMR) burden and the carriage of integrons that are essential elements for spreading antimicrobial resistance genes (ARG). Foods analysed consisted of cooked vegetables (kale, cabbage, and nightshades), boiled cereal foods (beans, rice, and Githeri, which is a mixture of beans and maize), meat, Omena fish (fried silver cyprinids), and Ugali (a product of simmered maize flour in boiled water). Results. The analysis detected contamination levels exceeding 2×104 c.f.u. ml−1 in 106 (38 %) of the 281 ready-to-eat foods analysed. The majority of food types had microbial contaminations of between 4.0×104 and 2.3×106 c.f.u. ml−1. Kale was the most contaminated with a mean of 2.3×106 c.f.u. ml−1, while Omena was the least contaminated with 4.0×104 c.f.u. ml−1. Foods sold close to open sewage and refuse sites were more contaminated than those sold in relatively ‘cleaner’ settings (P <0.0001, O.R 0.1162, C.I 0.1162–0.120). A total of 405 bacterial isolates were recovered and included; Klebsiella spp 116 (29 %), Escherichia coli 104 (26 %), Enterobacter agglomerans 88 (22 %), Proteus mirabilis 30 (7 %), Salmonella spp 28 (7 %), Citrobacter freundii 27 (7 %) and Serratia marcescens 12 (3 %). Imipenem (IPM, 100 %) was the most effective antimicrobial agent, followed by cefepime (98 %). Ampicillin (AMP, 33 %), trimethoprim (TMP, 27 %), and sulfamethoxazole (SMX, 23 %) on the other hand, were the least effective antimicrobials. The analysis also found ten isolates (2 %) that had co-resistance to third-generation cephalosporins, fluoroquinolone (CIP), quinolones (NAL) and aminoglycosides (GEN); hereby we refer to this phenotype as the βFQA. The prevalence of multidrug-resistant (MDR) strains was 23 % (93), while that of extended-spectrum β-lactamases (ESBL) producing strains was 4 % (17). The bla TEM was the most prevalent (55 %) β-lactamase (bla) gene among the screened 93 MDR-strains. Carriage of class one integrons (intI1) was more common (23 %) than intl2 (3 %) among these MDR-strains. Bacterial diversity analysis using the GTG5-PCR found no significant clusters for analysed E. coli and K. pneumoniae, suggesting recovered isolates were genetically diverse and not due to non-clonal expansion. The findings of this study are an indication that contaminated foods can be a reservoir for enteric pathogens and a source of AMR strains.


2021 ◽  
Vol 7 (8) ◽  
Author(s):  
Spencer A. Bruce ◽  
Yen-Hua Huang ◽  
Pauline L. Kamath ◽  
Henriette van Heerden ◽  
Wendy C. Turner

Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. While analyses of genetic data from across the globe have increased our understanding of this bacterium’s population genomic structure, the influence of selective pressures on this successful pathogen is not well understood. In this study, we investigate the effects of antimicrobial resistance, phage diversity, geography and isolation source in shaping population genomic structure. We also identify a suite of candidate genes potentially under selection, driving patterns of diversity across 356 globally extant B. anthracis genomes. We report ten antimicrobial resistance genes and 11 different prophage sequences, resulting in the first large-scale documentation of these genetic anomalies for this pathogen. Results of random forest classification suggest genomic structure may be driven by a combination of antimicrobial resistance, geography and isolation source, specific to the population cluster examined. We found strong evidence that a recombination event linked to a gene involved in protein synthesis may be responsible for phenotypic differences between comparatively disparate populations. We also offer a list of genes for further examination of B. anthracis evolution, based on high-impact single nucleotide polymorphisms (SNPs) and clustered mutations. The information presented here sheds new light on the factors driving genomic structure in this notorious pathogen and may act as a road map for future studies aimed at understanding functional differences in terms of B. anthracis biogeography, virulence and evolution.


Sign in / Sign up

Export Citation Format

Share Document