Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients

Microbiology ◽  
2004 ◽  
Vol 150 (5) ◽  
pp. 1315-1326 ◽  
Author(s):  
Julianne V. Kus ◽  
Elizabeth Tullis ◽  
Dennis G. Cvitkovitch ◽  
Lori L. Burrows

Type IV pili (TFP) are important colonization factors of the opportunistic pathogen Pseudomonas aeruginosa, involved in biofilm formation and attachment to host cells. This study undertook a comprehensive analysis of TFP alleles in more than 290 environmental, clinical, rectal and cystic fibrosis (CF) isolates of P. aeruginosa. Based on the results, a new system of nomenclature is proposed, in which P. aeruginosa TFP are divided into five distinct phylogenetic groups. Each pilin allele is stringently associated with characteristic, distinct accessory genes that allow the identification of the allele by specific PCR. The invariant association of the pilin and accessory genes implies horizontal transfer of the entire locus. Analysis of pilin allele distribution among isolates from various sources revealed a striking bias in the prevalence of isolates with group I pilin genes from CF compared with non-CF human sources (P<0·0001), suggesting this particular pilin type, which can be post-translationally modified by glycosylation via the action of TfpO (PilO), may confer a colonization or persistence advantage in the CF host. This allele was also predominant in paediatric CF isolates (29 of 43; 67·4 %), showing that this bias is apparent early in colonization. Group I pilins were also the most common type found in environmental isolates tested. To the authors' knowledge, this is the first example of a P. aeruginosa virulence factor allele that is strongly associated with CF isolates.

2014 ◽  
Vol 2 (4) ◽  
pp. 529-536
Author(s):  
Peyman Ghoraishizadeh ◽  
Shraddha Raikar ◽  
Mahsa Takhtechian

Pseudomonas aeruginosa (PA) as an opportunistic pathogen infects the pulmonary tract, bladder, cystic fibrosis patients and burn victims. PA infections treatment is challenging because of its ability to rapidly develop resistance to multiple classes of antibiotics. Lectin is protein that isexpressed in cell of PA and cause of infection by attaching to the host cells. Lectin A gene coding lectin protein so we cloned and expressedthis gene then purified of related protein, that can be used in preparation of vaccine to treat PA infections.DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11559 Int J Appl Sci Biotechnol, Vol. 2(4): 529-536 


mBio ◽  
2021 ◽  
Author(s):  
Megan Y. Nas ◽  
Jeffrey Gabell ◽  
Nicholas P. Cianciotto

S. maltophilia is an increasingly important opportunistic pathogen. Inherently resistant to many antibiotics, S. maltophilia is often associated with lung infection, being, among other things, a complicating factor in cystic fibrosis patients.


2008 ◽  
Vol 190 (21) ◽  
pp. 7022-7034 ◽  
Author(s):  
Miranda L. Asikyan ◽  
Julianne V. Kus ◽  
Lori L. Burrows

ABSTRACTPseudomonas aeruginosauses type IV pili to colonize various materials and for surface-associated twitching motility. We previously identified five phylogenetically distinct alleles ofpilAinP. aeruginosa, four of which occur in genetic cassettes with specific accessory genes (J. V. Kus, E. Tullis, D. G. Cvitkovitch, and L. L. Burrows, Microbiology 150:1315-1326, 2004). Each of the five pilin alleles, with and without its associated pilin accessory gene, was used to complement a group II PAO1pilAmutant. Expression of group I or IVpilAgenes restored twitching motility to the same extent as the PAO1 group II pilin. In contrast, poor twitching resulted from complementation with group III or group VpilAgenes but increased significantly when the cognatetfpYortfpZaccessory genes were cointroduced. The enhanced motility was linked to an increase in recoverable surface pili and not to alterations in total pilin pools. Expression of the group III or V pilins in a PAO1pilA-pilTdouble mutant yielded large amounts of surface pili, regardless of the presence of the accessory genes. Therefore, poor piliation in the absence of the TfpY and TfpZ accessory proteins results from a net increase in PilT-mediated retraction. Similar phenotypes were observed fortfpYsingle andtfpY-pilTdouble knockout mutants of group III strain PA14. A PilAV-TfpY chimera produced few surface pili, showing that the accessory proteins are specific for their cognate pilin. The genetic linkage between specific pilin and accessory genes may be evolutionarily conserved because the accessory proteins increase pilus expression on the cell surface, thereby enhancing function.


2005 ◽  
Vol 187 (3) ◽  
pp. 829-839 ◽  
Author(s):  
Poney Chiang ◽  
Marc Habash ◽  
Lori L. Burrows

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.


2020 ◽  
Author(s):  
Madeline Mei ◽  
Jacob Thomas ◽  
Stephen P. Diggle

AbstractBacteriocins are proteinaceous antimicrobials produced by bacteria which are active against other strains of the same species. R-type pyocins are phage tail-like bacteriocins produced by Pseudomonas aeruginosa. Due to their anti-pseudomonal activity, R-pyocins have potential as therapeutics in infection. P. aeruginosa is a Gram-negative opportunistic pathogen and is particularly problematic for individuals with cystic fibrosis (CF). P. aeruginosa from CF lung infections develop increasing resistance to antibiotics, making new treatment approaches essential. P. aeruginosa populations become phenotypically and genotypically diverse during infection, however little is known of the efficacy of R-pyocins against heterogeneous populations. R-pyocins vary by subtype (R1-R5), distinguished by binding to different residues on the lipopolysaccharide (LPS). Each type varies in killing spectrum, and each strain produces only one R-type. To evaluate the prevalence of different R-types, we screened P. aeruginosa strains from the International Pseudomonas Consortium Database (IPCD) and from our biobank of CF strains. We found that (i) R1-types were the most prevalent R-type among strains from respiratory sources and (ii) isolates collected from the same patient have the same R-type. We then assessed the impact of diversity on R-pyocin susceptibility and found a heterogenous response to R-pyocins within populations, likely due to differences in the LPS core. Our work reveals that heterogeneous populations of microbes exhibit variable susceptibility to R-pyocins and highlights that there is likely heterogeneity in response to other types of LPS-binding antimicrobials, including phage.ImportanceR-pyocins have potential as alternative therapeutics against Pseudomonas aeruginosa in chronic infection, however little is known about the efficacy of R-pyocins in heterogeneous bacterial populations. P. aeruginosa is known to become resistant to multiple antibiotics, as well as evolve phenotypic and genotypic diversity over time; thus it is particularly difficult to eradicate in chronic cystic fibrosis (CF) lung infections. In this study, we found that P. aeruginosa populations from CF lungs maintain the same R-pyocin genotype but exhibit heterogeneity in susceptibility to R-pyocins from other strains. Our findings suggest there is likely heterogeneity in response to other types of LPS-binding antimicrobials, such as phage, highlighting the necessity of further studying the potential of LPS-binding antimicrobial particles as alternative therapies in chronic infections.


2020 ◽  
Vol 9 (26) ◽  
Author(s):  
Andrea Sass ◽  
Tom Coenye

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that is able to cause various infections, including airway infections in cystic fibrosis patients. Here, we present the complete closed and annotated genome sequence of P. aeruginosa AA2, an isolate obtained early during infection of the respiratory tract of a German cystic fibrosis patient.


2018 ◽  
Vol 115 (42) ◽  
pp. 10714-10719 ◽  
Author(s):  
Alana Schick ◽  
Rees Kassen

Chronic infection of the cystic fibrosis (CF) airway by the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of morbidity and mortality for adult CF patients. Prolonged infections are accompanied by adaptation of P. aeruginosa to the unique conditions of the CF lung environment, as well as marked diversification of the pathogen into phenotypically and genetically distinct strains that can coexist for years within a patient. Little is known, however, about the causes of this diversification and its impact on patient health. Here, we show experimentally that, consistent with ecological theory of diversification, the nutritional conditions of the CF airway can cause rapid and extensive diversification of P. aeruginosa. Mucin, the substance responsible for the increased viscosity associated with the thick mucus layer in the CF airway, had little impact on within-population diversification but did promote divergence among populations. Furthermore, in vitro evolution recapitulated traits thought to be hallmarks of chronic infection, including reduced motility and increased biofilm formation, and the range of phenotypes observed in a collection of clinical isolates. Our results suggest that nutritional complexity and reduced dispersal can drive evolutionary diversification of P. aeruginosa independent of other features of the CF lung such as an active immune system or the presence of competing microbial species. We suggest that diversification, by generating extensive phenotypic and genetic variation on which selection can act, may be a key first step in the development of chronic infections.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Whitney E. England ◽  
Ted Kim ◽  
Rachel J. Whitaker

ABSTRACTViruses that infect the widespread opportunistic pathogenPseudomonas aeruginosahave been shown to influence physiology and critical clinical outcomes in cystic fibrosis (CF) patients. To understand how CRISPR-Cas immune interactions may contribute to the distribution and coevolution ofP. aeruginosaand its viruses, we reconstructed CRISPR arrays from a highly sampled longitudinal data set from CF patients attending the Copenhagen Cystic Fibrosis Clinic in Copenhagen, Denmark (R. L. Marvig, L. M. Sommer, S. Molin, and H. K. Johansen, Nat Genet 47:57–64, 2015,https://doi.org/10.1038/ng.3148). We show that new spacers are not added to or deleted from CRISPR arrays over time within a single patient but do vary among patients in this data set. We compared assembled CRISPR arrays from this data set to CRISPR arrays extracted from 726 additional publicly availableP. aeruginosasequences to show that local diversity in this population encompasses global diversity and that there is no evidence for population structure associated with location or environment sampled. We compare over 3,000 spacers from our global data set to 98 lytic and temperate viruses and proviruses and find a subset of related temperate virus clusters frequently targeted by CRISPR spacers. Highly targeted viruses are matched by different spacers in different arrays, resulting in a pattern of distributed immunity within the global population. Understanding the multiple immune contexts thatP. aeruginosaviruses face can be applied to study ofP. aeruginosagene transfer, the spread of epidemic strains in cystic fibrosis patients, and viral control ofP. aeruginosainfection.IMPORTANCEPseudomonas aeruginosais a widespread opportunistic pathogen and a major cause of morbidity and mortality in cystic fibrosis patients. Microbe-virus interactions play a critical role in shaping microbial populations, as viral infections can kill microbial populations or contribute to gene flow among microbes. Investigating howP. aeruginosauses its CRISPR immune system to evade viral infection aids our understanding of how this organism spreads and evolves alongside its viruses in humans and the environment. Here, we identify patterns of CRISPR targeting and immunity that indicateP. aeruginosaand its viruses evolve in both a broad global population and in isolated human “islands.” These data set the stage for exploring metapopulation dynamics occurring within and between isolated “island” populations associated with CF patients, an essential step to inform future work predicting the specificity and efficacy of virus therapy and the spread of invasive viral elements and pathogenic epidemic bacterial strains.


2018 ◽  
Vol 5 (9) ◽  
pp. 180623 ◽  
Author(s):  
Jeffrey J. Bara ◽  
Zachary Matson ◽  
Susanna K. Remold

Understanding characteristic differences between host-associated and free-living opportunistic pathogens can provide insight into the fundamental requirements for success after dispersal to the host environment, and more generally into the ecological and evolutionary processes by which populations respond to simultaneous selection on complex interacting traits. We examined how cystic fibrosis (CF)-associated and environmental isolates of the opportunistic pathogen Pseudomonas aeruginosa differ in the production of an ecologically important class of proteinaceous toxins known as bacteriocins, and how overall competitive ability depends on the production of and resistance to these bacteriocins. We determined bacteriocin gene content in a diverse collection of environmental and CF isolates and measured bacteriocin-mediated inhibition, resistance and the outcome of competition in a shared environment between all possible pairs of these isolates at 25°C and 37°C. Although CF isolates encoded significantly more bacteriocin genes, our phenotypic assays suggest that they have diminished bacteriocin-mediated killing and resistance capabilities relative to environmental isolates, regardless of incubation temperature. Notably, however, although bacteriocin killing and resistance profiles significantly predicted head-to-head competitive outcomes, CF and environmental isolates did not differ significantly in their competitive ability. This suggests that the contribution of bacteriocins to competitive ability involves selection on other traits that may be pleiotropically linked to interference competition mediated by bacteriocins.


2007 ◽  
Vol 189 (19) ◽  
pp. 6743-6750 ◽  
Author(s):  
Tewes Tralau ◽  
Stéphane Vuilleumier ◽  
Christelle Thibault ◽  
Barry J. Campbell ◽  
C. Anthony Hart ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes a number of infections in humans, but is best known for its association with cystic fibrosis. It is able to use a wide range of sulfur compounds as sources of sulfur for growth. Gene expression in response to changes in sulfur supply was studied in P. aeruginosa E601, a cystic fibrosis isolate that displays mucin sulfatase activity, and in P. aeruginosa PAO1. A large family of genes was found to be upregulated by sulfate limitation in both isolates, encoding sulfatases and sulfonatases, transport systems, oxidative stress proteins, and a sulfate-regulated TonB/ExbBD complex. These genes were localized in five distinct islands on the genome and encoded proteins with a significantly reduced content of cysteine and methionine. Growth of P. aeruginosa E601 with mucin as the sulfur source led not only to a sulfate starvation response but also to induction of genes involved with type III secretion systems.


Sign in / Sign up

Export Citation Format

Share Document