Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides

Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1881-1891 ◽  
Author(s):  
Ryan T. Novak ◽  
Rachel F. Gritzer ◽  
Edward R. Leadbetter ◽  
Walter Godchaux

Taurine metabolism by two phototrophically grown purple nonsulfur bacteria enrichment isolates has been examined. Rhodopseudomonas palustris (strain Tau1) grows with taurine as a sole electron donor, sulfur and nitrogen source during photoautotrophic growth. Rhodobacter sphaeroides (strain Tau3) grows on the compound as sole electron donor, sulfur and nitrogen source, and partial carbon source, in the presence of CO2 during photoheterotrophic growth. Both organisms utilize an inducible taurine–pyruvate aminotransferase and a sulfoacetaldehyde acetyltransferase. The products of this metabolism are bisulfite and acetyl phosphate. Bisulfite ultimately was oxidized to sulfate, but this was not an adequate source of electrons for photometabolism. Experiments using either [U-14C]taurine or 14CO2 demonstrated that Rb. sphaeroides Tau3 assimilated the carbon from approximately equimolar amounts of taurine and exogenous CO2. The taurine-carbon assimilation was not diminished by excess non-radioactive bicarbonate. Malate synthase (but not isocitrate lyase) was induced in these taurine-grown cells. It is concluded that assimilation of taurine carbon occurs through an intermediate other than CO2. Similar labelling experiments with Rp. palustris Tau1 determined that taurine is utilized only as an electron donor for the reduction of CO2, which contributes all the cell carbon. Photoautotrophic metabolism was confirmed in this organism by the absence of either malate synthase or isocitrate lyase in taurine+CO2-grown cells. Culture collection strains of these two bacteria did not utilize taurine in these fashions.

2017 ◽  
Vol 114 (11) ◽  
pp. E2225-E2232 ◽  
Author(s):  
Susan Puckett ◽  
Carolina Trujillo ◽  
Zhe Wang ◽  
Hyungjin Eoh ◽  
Thomas R. Ioerger ◽  
...  

The glyoxylate shunt is a metabolic pathway of bacteria, fungi, and plants used to assimilate even-chain fatty acids (FAs) and has been implicated in persistence ofMycobacterium tuberculosis(Mtb). Recent work, however, showed that the first enzyme of the glyoxylate shunt, isocitrate lyase (ICL), may mediate survival ofMtbduring the acute and chronic phases of infection in mice through physiologic functions apart from fatty acid metabolism. Here, we report that malate synthase (MS), the second enzyme of the glyoxylate shunt, is essential for in vitro growth and survival ofMtbon even-chain fatty acids, in part, for a previously unrecognized activity: mitigating the toxicity of glyoxylate excess arising from metabolism of even-chain fatty acids. Metabolomic profiling revealed that MS-deficientMtbcultured on fatty acids accumulated high levels of the ICL aldehyde endproduct, glyoxylate, and increased levels of acetyl phosphate, acetoacetyl coenzyme A (acetoacetyl-CoA), butyryl CoA, acetoacetate, and β-hydroxybutyrate. These changes were indicative of a glyoxylate-induced state of oxaloacetate deficiency, acetate overload, and ketoacidosis. Reduction of intrabacterial glyoxylate levels using a chemical inhibitor of ICL restored growth of MS-deficientMtb, despite inhibiting entry of carbon into the glyoxylate shunt. In vivo depletion of MS resulted in sterilization ofMtbin both the acute and chronic phases of mouse infection. This work thus identifies glyoxylate detoxification as an essential physiologic function ofMtbmalate synthase and advances its validation as a target for drug development.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Claudia Durall ◽  
Kateryna Kukil ◽  
Jeffrey A. Hawkes ◽  
Alessia Albergati ◽  
Peter Lindblad ◽  
...  

Abstract Background Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. Results We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. Conclusions Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.


2001 ◽  
Vol 29 (2) ◽  
pp. 283-286 ◽  
Author(s):  
E. L. Rylott ◽  
M. A. Hooks ◽  
I. A. Graham

Molecular genetic approaches in the model plant Arabidopsis thaliana (ColO) are shedding new light on the role and control of the pathways associated with the mobilization of lipid reserves during oilseed germination and post-germinative growth. Numerous independent studies have reported on the expression of individual genes encoding enzymes from the three major pathways: β-oxidation, the glyoxylate cycle and gluconeogenesis. However, a single comprehensive study of representative genes and enzymes from the different pathways in a single plant species has not been done. Here we present results from Arabidopsis that demonstrate the co-ordinate regulation of gene expression and enzyme activities for the acyl-CoA oxidase- and 3-ketoacyl-CoA thiolasemediated steps of β-oxidation, the isocitrate lyase and malate synthase steps of the glyoxylate cycle and the phosphoenolpyruvate carboxykinase step of gluconeogenesis. The mRNA abundance and enzyme activities increase to a peak at stage 2, 48 h after the onset of seed germination, and decline thereafter either to undetectable levels (for malate synthase and isocitrate lyase) or low basal levels (for the genes of β-oxidation and gluconeogenesis). The co-ordinate induction of all these genes at the onset of germination raises the possibility that a global regulatory mechanism operates to induce the expression of genes associated with the mobilization of storage reserves during the heterotrophic growth period.


2004 ◽  
Vol 186 (9) ◽  
pp. 2798-2809 ◽  
Author(s):  
Robert Gerstmeir ◽  
Annette Cramer ◽  
Petra Dangel ◽  
Steffen Schaffer ◽  
Bernhard J. Eikmanns

ABSTRACT The adaptation of Corynebacterium glutamicum to acetate as a carbon and energy source involves transcriptional regulation of the pta-ack operon coding for the acetate-activating enzymes phosphotransacetylase and acetate kinase and of the aceA and aceB genes coding for the glyoxylate cycle enzymes isocitrate lyase and malate synthase, respectively. Deletion and mutation analysis of the respective promoter regions led to the identification of highly conserved 13-bp motifs (AA/GAACTTTGCAAA) as cis-regulatory elements for expression of the pta-ack operon and the aceA and aceB genes. By use of DNA affinity chromatography, a 53-kDa protein specifically binding to the promoter/operator region of the pta-ack operon was purified. Mass spectrometry and peptide mass fingerprinting identified the protein as a putative transcriptional regulator (which was designated RamB). Purified His-tagged RamB protein was shown to bind specifically to both the pta-ack and the aceA/aceB promoter/operator regions. Directed deletion of the ramB gene in the genome of C. glutamicum resulted in mutant strain RG1. Whereas the wild type of C. glutamicum showed high-level specific activities of acetate kinase, phosphotransacetylase, isocitrate lyase, and malate synthase when grown on acetate and low-level specific activities when grown on glucose as sole carbon and energy sources, mutant RG1 showed high-level specific activities with all four enzymes irrespective of the substrate. Comparative transcriptional cat fusion experiments revealed that this deregulation takes place at the level of transcription. The results indicate that RamB is a negative transcriptional regulator of genes involved in acetate metabolism of C. glutamicum.


2010 ◽  
Vol 192 (5) ◽  
pp. 1249-1258 ◽  
Author(s):  
Tobias J. Erb ◽  
Lena Frerichs-Revermann ◽  
Georg Fuchs ◽  
Birgit E. Alber

ABSTRACT Assimilation of acetyl coenzyme A (acetyl-CoA) is an essential process in many bacteria that proceeds via the glyoxylate cycle or the ethylmalonyl-CoA pathway. In both assimilation strategies, one of the final products is malate that is formed by the condensation of acetyl-CoA with glyoxylate. In the glyoxylate cycle this reaction is catalyzed by malate synthase, whereas in the ethylmalonyl-CoA pathway the reaction is separated into two proteins: malyl-CoA lyase, a well-known enzyme catalyzing the Claisen condensation of acetyl-CoA with glyoxylate and yielding malyl-CoA, and an unidentified malyl-CoA thioesterase that hydrolyzes malyl-CoA into malate and CoA. In this study the roles of Mcl1 and Mcl2, two malyl-CoA lyase homologs in Rhodobacter sphaeroides, were investigated by gene inactivation and biochemical studies. Mcl1 is a true (3S)-malyl-CoA lyase operating in the ethylmalonyl-CoA pathway. Notably, Mcl1 is a promiscuous enzyme and catalyzes not only the condensation of acetyl-CoA and glyoxylate but also the cleavage of β-methylmalyl-CoA into glyoxylate and propionyl-CoA during acetyl-CoA assimilation. In contrast, Mcl2 was shown to be the sought (3S)-malyl-CoA thioesterase in the ethylmalonyl-CoA pathway, which specifically hydrolyzes (3S)-malyl-CoA but does not use β-methylmalyl-CoA or catalyze a lyase or condensation reaction. The identification of Mcl2 as thioesterase extends the enzyme functions of malyl-CoA lyase homologs that have been known only as “Claisen condensation” enzymes so far. Mcl1 and Mcl2 are both related to malate synthase, an enzyme which catalyzes both a Claisen condensation and thioester hydrolysis reaction.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Baoyu Zhang ◽  
Xiujun Xie ◽  
Xuehua Liu ◽  
Linwen He ◽  
Yuanyuan Sun ◽  
...  

Abstract Background Pyropia yezoensis (Rhodophyta) is widely cultivated in East Asia and plays important economic, ecological and research roles. Although inorganic carbon utilization of P. yezoensis has been investigated from a physiological aspect, the carbon concentration mechanism (CCM) of P. yezoensis remains unclear. To explore the CCM of P. yezoensis, especially during its different life stages, we tracked changes in the transcriptome, photosynthetic efficiency and in key enzyme activities under different inorganic carbon concentrations. Results Photosynthetic efficiency demonstrated that sporophytes were more sensitive to low carbon (LC) than gametophytes, with increased photosynthesis rate during both life stages under high carbon (HC) compared to normal carbon (NC) conditions. The amount of starch and number of plastoglobuli in cells corresponded with the growth reaction to different inorganic carbon (Ci) concentrations. We constructed 18 cDNA libraries from 18 samples (three biological replicates per Ci treatment at two life cycles stages) and sequenced these using the Illumina platform. De novo assembly generated 182,564 unigenes, including approximately 275 unigenes related to CCM. Most genes encoding internal carbonic anhydrase (CA) and bicarbonate transporters involved in the biophysical CCM pathway were induced under LC in comparison with NC, with transcript abundance of some PyCAs in gametophytes typically higher than that in sporophytes. We identified all key genes participating in the C4 pathway and showed that their RNA abundances changed with varying Ci conditions. High decarboxylating activity of PEPCKase and low PEPCase activity were observed in P. yezoensis. Activities of other key enzymes involved in the C4-like pathway were higher under HC than under the other two conditions. Pyruvate carboxylase (PYC) showed higher carboxylation activity than PEPC under these Ci conditions. Isocitrate lyase (ICL) showed high activity, but the activity of malate synthase (MS) was very low. Conclusion We elucidated the CCM of P. yezoensis from transcriptome and enzyme activity levels. All results indicated at least two types of CCM in P. yezoensis, one involving CA and an anion exchanger (transporter), and a second, C4-like pathway belonging to the PEPCK subtype. PYC may play the main carboxylation role in this C4-like pathway, which functions in both the sporophyte and gametophyte life cycles.


1971 ◽  
Vol 17 (2) ◽  
pp. 209-211 ◽  
Author(s):  
J. Bland ◽  
Wu-Kuang Yeh ◽  
D. White ◽  
A. Hendricks

Isocitrate lyase (EC. 4.1.3.1) and malate synthase (EC. 4.1.3.2) increase during microcyst formation in Myxococcus xanthus. The increase in activity is inhibited by chloramphenicol and actinomycin-D.


2000 ◽  
Vol 182 (24) ◽  
pp. 7007-7013 ◽  
Author(s):  
Marijke A. H. Luttik ◽  
Peter Kötter ◽  
Florian A. Salomons ◽  
Ida J. van der Klei ◽  
Johannes P. van Dijken ◽  
...  

ABSTRACT The Saccharomyces cerevisiae ICL1 gene encodes isocitrate lyase, an essential enzyme for growth on ethanol and acetate. Previous studies have demonstrated that the highly homologousICL2 gene (YPR006c) is transcribed during the growth of wild-type cells on ethanol. However, even when multiple copies are introduced, ICL2 cannot complement the growth defect oficl1 null mutants. It has therefore been suggested thatICL2 encodes a nonsense mRNA or nonfunctional protein. In the methylcitrate cycle of propionyl-coenzyme A metabolism, 2-methylisocitrate is converted to succinate and pyruvate, a reaction similar to that catalyzed by isocitrate lyase. To investigate whetherICL2 encodes a specific 2-methylisocitrate lyase, isocitrate lyase and 2-methylisocitrate lyase activities were assayed in cell extracts of wild-type S. cerevisiae and of isogenicicl1, icl2, and icl1 icl2 null mutants. Isocitrate lyase activity was absent in icl1 andicl1 icl2 null mutants, whereas in contrast, 2-methylisocitrate lyase activity was detected in the wild type and single icl mutants but not in the icl1 icl2mutant. This demonstrated that ICL2 encodes a specific 2-methylisocitrate lyase and that the ICL1-encoded isocitrate lyase exhibits a low but significant activity with 2-methylisocitrate. Subcellular fractionation studies and experiments with an ICL2-green fluorescent protein fusion demonstrated that theICL2-encoded 2-methylisocitrate lyase is located in the mitochondrial matrix. Similar to that of ICL1, transcription of ICL2 is subject to glucose catabolite repression. In glucose-limited cultures, growth with threonine as a nitrogen source resulted in a ca. threefold induction ofICL2 mRNA levels and of 2-methylisocitrate lyase activity in cell extracts relative to cultures grown with ammonia as the nitrogen source. This is consistent with an involvement of the 2-methylcitrate cycle in threonine catabolism.


1979 ◽  
Vol 34 (12) ◽  
pp. 1232-1236 ◽  
Author(s):  
Wolfram Koller ◽  
Jürgen Frevert ◽  
Helmut Kindi

Seeds of cucumber fruits at a late stage of ripening were analyzed for microbodies and micro­body components. On isopycnic density gradient centrifugation of homogenates in the presence of EDTA, several particulate fractions were obtained: a light membraneous fraction (density d = 1.09-1.11 kg × 1-1), a mitochondria-enriched fraction (d = 1.21 kg × 1-1), a microbody-enriched fraction (d = 1.23 kg × 1-1), and a protein body fraction (d= 1.26 - 1.29 kg × 1-1). Microbo­dies were revealed by exactly coinciding peaks of malate synthase, catalase and crotonase; small proportions of citrate synthase and malate dehydrogenase were also present in this zone. Isocitrate lyase activity, however, did not occur in the seeds at this stage. The examination of enzyme activi­ties indicated the presence of microbodies which cannot function as competent glyoxysomes be­cause of the lack of isocitrate lyase. Moreover, de novo synthesis from [3H] leucine could be de­monstrated for malate synthase by means of immunoprecipitation of newly synthesized malate synthase and subsequent electrophoretic analysis.


Sign in / Sign up

Export Citation Format

Share Document