Surface plasmon resonance-based interaction studies reveal competition of Streptomyces lividans type I signal peptidases for binding preproteins

Microbiology ◽  
2006 ◽  
Vol 152 (5) ◽  
pp. 1441-1450 ◽  
Author(s):  
Nick Geukens ◽  
Smitha Rao C. V. ◽  
Rafael P. Mellado ◽  
Filip Frederix ◽  
Gunter Reekmans ◽  
...  

Type I signal peptidases (SPases) are responsible for the cleavage of signal peptides from secretory proteins. Streptomyces lividans contains four different SPases, denoted SipW, SipX, SipY and SipZ, having at least some differences in their substrate specificity. In this report in vitro preprotein binding/processing and protein secretion in single SPase mutants was determined to gain more insight into the substrate specificity of the different SPases and the underlying molecular basis. Results indicated that preproteins do not preferentially bind to a particular SPase, suggesting SPase competition for binding preproteins. This observation, together with the fact that each SPase could process each preprotein tested with a similar efficiency in an in vitro assay, suggested that there is no real specificity in substrate binding and processing, and that they are all actively involved in preprotein processing in vivo. Although this seems to be the case for some proteins tested, high-level secretion of others was clearly dependent on only one particular SPase demonstrating clear differences in substrate preference at the in vivo processing level. Hence, these results strongly suggest that there are additional factors other than the cleavage requirements of the enzymes that strongly affect the substrate preference of SPases in vivo.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 148-148
Author(s):  
Latorya E. Arnold ◽  
Mary B. Palascak ◽  
Clinton H. Joiner ◽  
Robert S. Franco

Abstract External phosphatidylserine (PS) is present on some sickle RBC and may contribute to thrombogenesis, endothelial adhesion, and shortened RBC lifespan. Phospholipid scramblase (PLSCR) disrupts phospholipid (PL) asymmetry by causing nonspecific PL equilibration across the membrane. Aminophospholipid translocase (APLT) maintains PL asymmetry by returning externalized PS to the inner membrane leaflet. It has been proposed that both APLT inhibition and PLSCR activation are required for PS externalization. Sickle RBC with low level external PS (Type I PS+) are present in cells of all densities and include some reticulocytes. Sickle RBC with high external PS (Type II PS+) are primarily found in the dense fraction. Type II cells are thought to be more important because: the high level of external PS should have greater consequence; high level external PS occurs primarily in pathologically dehydrated sickle RBC; and low level external PS appears to be physiological in immature RBC. We have previously shown that dense, dehydrated sickle RBC, including the small number of dense transferrin receptor positive (TfR+) reticulocytes, have markedly inhibited APLT. In the current studies, we examined the relationships among external PS, APLT, PLSCR, and density in mature RBC and TfR+ reticulocytes using 3-color flow cytometry. APLT and PLSCR activities were assayed using fluorescent PL analogues (NBD-PS and NBD-PC, respectively), and expressed as the fraction of probe internalized. External PS was measured with Annexin V-PE and TfR+ reticulocytes were identified with anti-TfR-PE/Cy5. PS+ cells had lower APLT activity compared to PS- cells that did not reach significance for n=3 (NBD-PS internalization fraction for PS-: 0.586±0.053; Type I PS+: 0.517±0.158, Type II PS+: 0.523±0.033). PS- sickle RBC had a uniformly low PLSCR activity similar to normal RBC (NBD-PC internalization fractions ∼ 0.1). In mature sickle RBC, PLSCR was more active in PS+ cells (PS-: 0.097±0.096; Type I PS+: 0.163±0.070, Type II PS+: 0.248±0.043; n=3; PS- vs Type I PS+: p=0.06; PS- vs Type II PS+: p=0.04; Type I versus Type II: p=0.03). TfR+ reticulocytes had increased APLT and PLSCR activity compared to mature sickle RBC, but there was no apparent relationship between PLSCR and external PS. Since dense sickle RBC had markedly inhibited APLT, we evaluated the relationship between dehydration and APLT activity. Dehydration of AA RBC from an MCHC of 35.6±2.2 to 49.2±2.0 g/dL inhibited APLT (from 0.484±0.068 to 0.301±0.076; n=7, p= 0.01). Dehydration of SS RBC from an MCHC of 34.8±3.5 to 50.1±3.9 g/dL also inhibited APLT (from 0.460±0.060 to 0.361±0.047; n=3, p=0.006), but not as low as in SS RBC dehydrated in vivo (0.222±0.036 at 44.7±5.6 g/dL; n=4, p=0.007 vs. SS RBC dehydrated in vitro). Rehydration of AA and SS RBC that had been dehydrated in vitro reversed APLT inhibition. However, APLT activity was not reversed upon rehydration of sickle RBC dehydrated in vivo. In summary, our data show that: many dense sickle RBC with significantly inhibited APLT are PS-, indicating that APLT inhibition alone does not result in PS externalization; dehydration contributes to, but is not entirely responsible for, the APLT inhibition seen in dense sickle RBC; and PS+ sickle RBC have increased PLSCR activity.


2021 ◽  
Author(s):  
◽  
Alistair Brown

<p>Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that synthesise bioactive peptides using an assembly line architecture, wherein each module is responsible for the incorporation of a monomer into the growing chain. Present in both fungi and bacteria, NRPSs are responsible for a wide variety of secondary metabolites and bioactive compounds including siderophores, antibiotics, anti-cancer compounds and immunosuppressants. For functionality, NRPSs require the attachment of a phosphopantetheine moiety to their peptidyl carrier protein domains. This reaction is catalysed by a phosphopantetheinyl transferase (PPTase).  The NRPS blue pigment synthetase A (BpsA) is unusual in that it is comprised of only a single module. BpsA contains an adenylation domain that recognises and sequentially binds two molecules of L-glutamine, an oxidation domain that is believed to oxidise each glutamine monomer, a peptidyl carrier protein domain that binds the phosphopantetheine moiety, and a thioesterase domain that cyclises each glutamine and releases the final bicyclic product from the enzyme. This final product is a blue pigment called indigoidine, and its synthesis from two molecules of L-glutamine is powered by ATP. Comparatively to other NRPSs BpsA is easy to manipulate and work with both in vitro and in vivo. Here, the ability to easily detect synthesis of indigoidine was utilised to provide a versatile reporter to detect a variety of biochemical activities.  PPTases are essential enzymes that are promising drug targets in the clinically important bacteria Pseudomonas aeruginosa and Mycobacterium tuberculosis. BpsA can be purified in the inactive apo form, which then requires a PPTase to activate it to enable indigoidine synthesis. Here it was shown that mixing BpsA, a PPTase, the enzymatic substrates, and a potential inhibitor enables screening for PPTase inhibition by monitoring the rate or extent of indigoidine synthesis. This method was optimised and used to screen commercial drug libraries against two PPTases, PcpS from P. aeruginosa and PptT from M. tuberculosis. Several novel inhibitors were identified and pilot in vivo studies were performed. M. tuberculosis also possesses a second essential PPTase called TB-AcpS, which has very narrow substrate specificity and cannot post-translationally modify BpsA. In an attempt to widen the substrate specificity a combination of rational engineering and directed evolution was employed. These attempts did not yield significant improvements in the ability of TB-AcpS to activate modified BpsA, however they did yield mutants that were more effective substrates for other type I PPTases.  The easily detectable nature of indigoidine also enabled application of BpsA as a reporter for a range of different substrates. Particularly effective was development of a commercially applicable method using BpsA to quantify L-glutamine in a range of conditions, including cell culture media and blood. The assay developed offers several advantages over currently available kits. BpsA was also used to detect and quantify ATP, and this was applied to monitor adenylation reactions. Finally, the ability of BpsA to synthesise indigoidine-like compounds from glutamine analogues was explored.</p>


2003 ◽  
Vol 185 (16) ◽  
pp. 4861-4871 ◽  
Author(s):  
Sophie Stephenson ◽  
Christian Mueller ◽  
Min Jiang ◽  
Marta Perego

ABSTRACT In Bacillus subtilis, an export-import pathway regulates production of the Phr pentapeptide inhibitors of Rap proteins. Processing of the Phr precursor proteins into the active pentapeptide form is a key event in the initiation of sporulation and competence development. The PhrA (ARNQT) and PhrE (SRNVT) peptides inhibit the RapA and RapE phosphatases, respectively, whose activity is directed toward the Spo0F∼P intermediate response regulator of the sporulation phosphorelay. The PhrC (ERGMT) peptide inhibits the RapC protein acting on the ComA response regulator for competence with regard to DNA transformation. The structural organization of PhrA, PhrE, and PhrC suggested a role for type I signal peptidases in the processing of the Phr preinhibitor, encoded by the phr genes, into the proinhibitor form. The proinhibitor was then postulated to be cleaved to the active pentapeptide inhibitor by an additional enzyme. In this report, we provide evidence that Phr preinhibitor proteins are subject to only one processing event at the peptide bond on the amino-terminal end of the pentapeptide. This processing event is most likely independent of type I signal peptidase activity. In vivo and in vitro analyses indicate that none of the five signal peptidases of B. subtilis (SipS, SipT, SipU, SipV, and SipW) are indispensable for Phr processing. However, we show that SipV and SipT have a previously undescribed role in sporulation, competence, and cell growth.


2021 ◽  
Author(s):  
◽  
Alistair Brown

<p>Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that synthesise bioactive peptides using an assembly line architecture, wherein each module is responsible for the incorporation of a monomer into the growing chain. Present in both fungi and bacteria, NRPSs are responsible for a wide variety of secondary metabolites and bioactive compounds including siderophores, antibiotics, anti-cancer compounds and immunosuppressants. For functionality, NRPSs require the attachment of a phosphopantetheine moiety to their peptidyl carrier protein domains. This reaction is catalysed by a phosphopantetheinyl transferase (PPTase).  The NRPS blue pigment synthetase A (BpsA) is unusual in that it is comprised of only a single module. BpsA contains an adenylation domain that recognises and sequentially binds two molecules of L-glutamine, an oxidation domain that is believed to oxidise each glutamine monomer, a peptidyl carrier protein domain that binds the phosphopantetheine moiety, and a thioesterase domain that cyclises each glutamine and releases the final bicyclic product from the enzyme. This final product is a blue pigment called indigoidine, and its synthesis from two molecules of L-glutamine is powered by ATP. Comparatively to other NRPSs BpsA is easy to manipulate and work with both in vitro and in vivo. Here, the ability to easily detect synthesis of indigoidine was utilised to provide a versatile reporter to detect a variety of biochemical activities.  PPTases are essential enzymes that are promising drug targets in the clinically important bacteria Pseudomonas aeruginosa and Mycobacterium tuberculosis. BpsA can be purified in the inactive apo form, which then requires a PPTase to activate it to enable indigoidine synthesis. Here it was shown that mixing BpsA, a PPTase, the enzymatic substrates, and a potential inhibitor enables screening for PPTase inhibition by monitoring the rate or extent of indigoidine synthesis. This method was optimised and used to screen commercial drug libraries against two PPTases, PcpS from P. aeruginosa and PptT from M. tuberculosis. Several novel inhibitors were identified and pilot in vivo studies were performed. M. tuberculosis also possesses a second essential PPTase called TB-AcpS, which has very narrow substrate specificity and cannot post-translationally modify BpsA. In an attempt to widen the substrate specificity a combination of rational engineering and directed evolution was employed. These attempts did not yield significant improvements in the ability of TB-AcpS to activate modified BpsA, however they did yield mutants that were more effective substrates for other type I PPTases.  The easily detectable nature of indigoidine also enabled application of BpsA as a reporter for a range of different substrates. Particularly effective was development of a commercially applicable method using BpsA to quantify L-glutamine in a range of conditions, including cell culture media and blood. The assay developed offers several advantages over currently available kits. BpsA was also used to detect and quantify ATP, and this was applied to monitor adenylation reactions. Finally, the ability of BpsA to synthesise indigoidine-like compounds from glutamine analogues was explored.</p>


2020 ◽  
pp. 40-50
Author(s):  
A. Nikitina

Analysis of literature data presented in search engines — Elibrary, PubMed, Cochrane — concerning the risk of developing type I allergic reactions in patients with blood diseases is presented. It is shown that the most common cause of type I allergic reactions is drugs included in the treatment regimens of this category of patients. The article presents statistics on the increase in the number of drug allergies leading to cases of anaphylactic shock in patients with blood diseases. Modern methods for the diagnosis of type I allergic reactions in vivo and in vitro are considered.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Sign in / Sign up

Export Citation Format

Share Document