scholarly journals Quantitative in vivo and in vitro characterization of co-infection by two genetically distant grass carp reoviruses

2013 ◽  
Vol 94 (6) ◽  
pp. 1301-1309 ◽  
Author(s):  
Tu Wang ◽  
Jiale Li ◽  
Liqun Lu

Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella) production in China. Through sequence analysis, the co-existence of two genetically distant grass carp reoviruses, named GCRV-JX01 and GCRV-JX02, was revealed in the same diseased grass carp sample collected in 2011. GCRV-JX01 and GCRV-JX02 shared high levels of homology with GCRV-873 and GCRV-GD108, respectively. In contrast to GCRV-JX01, GCRV-JX02 induced no cytopathic effect in infected cells. A quantitative real-time PCR assay was employed to monitor the replication efficiency of both virus strains in either Ctenopharyngodon idella kidney (CIK) cells or infected cell supernatant. The results demonstrated that, although GCRV-JX02 did reduce the cellular replication level of GCRV-JX01 up to 10-fold during co-infection, there was no significant impact on the productive virus progeny level in supernatant compared to that of cells infected by GCRV-JX01 alone. To validate the hypothesis that both viruses might co-infect grass carp without significant interference in the field, we collected clinical samples from two different fish farms in 2012 and monitored virus loads for each fish. The data showed that 55 % of the collected fish samples were co-infected by GCRV-JX01 and GCRV-JX02, and the single virus infection rate was 10 % for GCRV-JX01 and 20 % for GCRV-JX02. For both viruses, the in vivo viral loads under co-infection and single viral infection were similar. No serological cross-reaction or cross-protection occurred between GCRV-JX01 and JX02 in our immunization and challenge tests. This new information on co-infection by two genetically distant virus strains should be helpful for designing vaccines targeting the causative agents of grass carp haemorrhagic disease.

2021 ◽  
Author(s):  
Xiaocheng Huang ◽  
Jian Sun ◽  
Chenchen Bian ◽  
Shanghong Ji ◽  
Hong ji

Abstract Background: The liver is the primary organ for frontline immune defense and lipid metabolism. Excessive lipid accumulation in the liver severely affects its metabolic homeostasis and causes metabolic diseases. Docosahexaenoic acid (DHA) is known for its beneficial effects on lipid metabolism and anti-inflammation, but its molecular mechanism remains unknown, especially in fish. In this study, we evaluated the protective effects of DHA on hepatic steatosis of grass carp (Ctenopharyngodon idella) in vivo and in vitro and mainly focused on lipogenesis and inflammation. Grass carp were fed with purified diets supplemented with 0%, 0.5% and 1% DHA for 8 weeks in vivo. Hepatocytes were treated with palmitic acid (PA) (200 μM) with or without DHA (50 or 100 μM) for 24 h in vitro. In addition, Compound C (CC, the inhibitor of AMP-activated protein kinase) was used to examine the mechanism of DHA on hepatic steatosis in vitro.Results: In this study, 1% DHA significantly decreased the liver triglyceride (TG), malondialdehyde (MDA), serum tumor necrosis factor α (TNFα) and nuclear factor kappa B (NFκB) contents. DHA (100 μM) effectively attenuated PA-induced lipid accumulation (P<0.05). Furthermore, DHA significantly inhibited endoplasmic reticulum (ER) stress and stimulated the expression of AMP-activated protein kinase (AMPK) and its downstream factors related to hepatic inflammation and lipogenesis in vivo and in vitro. However, the effects of DHA could be abrogated by CC in vitro.Conclusions: DHA exerted a protective effect on hepatic steatosis by inhibiting ER stress, improving antioxidant ability, relieving hepatic inflammation and inhibiting hepatic lipogenesis in an AMPK-dependent manner. Our findings give a theoretical foundation for further elucidation of the beneficial role of DHA in vertebrates.


Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


2021 ◽  
Vol 14 (7) ◽  
pp. 644
Author(s):  
Cintya Perdomo ◽  
Elena Aguilera ◽  
Ileana Corvo ◽  
Paula Faral-Tello ◽  
Elva Serna ◽  
...  

The trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania are the causative agents of human African trypanosomiasis, Chagas Disease and Leishmaniasis, respectively. These infections primarily affect poor, rural communities in the developing world, and are responsible for trapping sufferers and their families in a disease/poverty cycle. The development of new chemotherapies is a priority given that existing drug treatments are problematic. In our search for novel anti-trypanosomatid agents, we assess the growth-inhibitory properties of >450 compounds from in-house and/or “Pathogen Box” (PBox) libraries against L. infantum, L. amazonensis, L.braziliensis, T. cruzi and T. brucei and evaluate the toxicities of the most promising agents towards murine macrophages. Screens using the in-house series identified 17 structures with activity against and selective toward Leishmania: Compounds displayed 50% inhibitory concentrations between 0.09 and 25 μM and had selectivity index values >10. For the PBox library, ~20% of chemicals exhibited anti-parasitic properties including five structures whose activity against L. infantum had not been reported before. These five compounds displayed no toxicity towards murine macrophages over the range tested with three being active in an in vivo murine model of the cutaneous disease, with 100% survival of infected animals. Additionally, the oral combination of three of them in the in vivo Chagas disease murine model demonstrated full control of the parasitemia. Interestingly, phenotyping revealed that the reference strain responds differently to the five PBox-derived chemicals relative to parasites isolated from a dog. Together, our data identified one drug candidate that displays activity against Leishmania and other Trypanosomatidae in vitro and in vivo, while exhibiting low toxicity to cultured mammalian cells and low in vivo acute toxicity.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Leilei Lin ◽  
Yu Wang ◽  
Sicheng Bian ◽  
Lili Sun ◽  
Zhibo Guo ◽  
...  

Abstract Background As a common haematological malignancy, acute myeloid leukaemia (AML), particularly with extramedullary infiltration (EMI), often results in a high mortality rate and poor prognosis. Circular RNAs (circRNAs) regulate biological and pathogenic processes, suggesting a potential role in AML. We have previously described the overall alterations in circRNAs and their regulatory networks between patients with AML presenting with and without EMI. This study aims to find new prognostic and therapeutic targets potentially associated with AML. Methods qRT-PCR was performed on samples from 40 patients with AML and 15 healthy controls. The possibility of using circPLXNB2 (circRNA derived from PLXNB2) as a diagnostic and prognostic biomarker for AML was analysed with multiple statistical methods. In vitro, the function of circPLXNB2 was studied by lentivirus transfection, CCK-8 assays, flow cytometry, and Transwell experiments. Western blotting and qRT-PCR were performed to detect the expression of related proteins and genes. The distribution of circPLXNB2 in cells was observed using RNA fluorescence in situ hybridization (RNA-FISH). We also investigated the role of circPLXNB2 by establishing AML xenograft models in NOD/SCID mice. Results By analysing the results of qRT-PCR detection of clinical samples, the expression of the circPLXNB2 and PLXNB2 mRNAs were significantly increased in patients with AML, more specifically in patients with AML presenting with EMI. High circPLXNB2 expression was associated with an obviously shorter overall survival and leukaemia-free survival of patients with AML. The circPLXNB2 expression was positively correlated with PLXNB2 mRNA expression, as evidenced by Pearson’s correlation analysis. RNA-FISH revealed that circPLXNB2 is mainly located in the nucleus. In vitro and in vivo, circPLXNB2 promoted cell proliferation and migration and inhibited apoptosis. Notably, circPLXNB2 also increased the expression of PLXNB2, BCL2 and cyclin D1, and reduced the expression of BAX. Conclusion In summary, we validated the high expression of circPLXNB2 and PLXNB2 in patients with AML. Elevated circPLXNB2 levels were associated with poor clinical outcomes in patients with AML. Importantly, circPLXNB2 accelerated tumour growth and progression, possibly by regulating PLXNB2 expression. Our study highlights the potential of circPLXNB2 as a new prognostic predictor and therapeutic target for AML in the future.


2018 ◽  
Vol 51 (1) ◽  
pp. 11-30 ◽  
Author(s):  
Xiaolan You ◽  
Yuanjie Wang ◽  
Jian Wu ◽  
Qinghong Liu ◽  
Dehu Chen ◽  
...  

Background/Aims: Increased expression of galectin-1 (Gal-1) in gastric cancer (GC) promotes metastasis and correlates with poor prognosis. The mechanisms by which Gal-1 promotes GC metastasis remain unknown. Methods: Gal-1and Sphingosine-1-phosphate receptor 1 (S1PR1) were determined by immunohistochemistry(IHC) and quantitative real time polymerase chain reaction (qRT-PCR) in GC specimens. Stably transfected Gal-1 or S1PR1 into SGC7901 and MGC-803 cells, western blot and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: Overexpression of Gal-1 enhanced expression of S1PR1 in SGC-7901 cells, and increased cell invasion, while knockdown Gal-1 in MGC-803 cells reduced S1PR1 expression and diminished invasion. Simultaneous knockdown of Gal-1 and overexpression of S1PR1 in MGC803 cells rescued invasive ability of MGC803 cells. S1PR1 was associated with expression of epithelial-to-mesenchymal transition (EMT) markers in vitro and in clinical samples. EMT induced in MGC-803 cells by TGF-β1 was accompanied by S1PR1 activation, while knockdown of S1PR1 reduced response to TGF-β1, suggest that Gal-1 promotes GC invasion by activating EMT through a S1PR1-dependent mechanism. Overexpression of S1PR1 promoted subcutaneous xenograft growth and pulmonary metastases, and enhanced expression of EMT markers. Conclusion: Galectin-1 promotes metastasis in gastric cancer through a S1PR1- dependent mechanism, our results indicate that targeting S1PR1 may be a novel strategy to treat GC metastasis.


Author(s):  
Xiong Shu ◽  
Pan-Pan Zhan ◽  
Li-Xin Sun ◽  
Long Yu ◽  
Jun Liu ◽  
...  

BackgroundFocusing on antiangiogenesis may provide promising choices for treatment of gastric cancer (GC). This study aimed to investigate the mechanistic role of BCAT1 in the pathogenesis of GC, particularly in angiogenesis.MethodsBioinformatics and clinical samples analysis were used to investigate the expression and potential mechanism of BCAT1 in GC. BGC823 cells with BCAT1 overexpression or silencing were induced by lentiviral transduction. Cell phenotypes and angiogenesis were evaluated. The relevant proteins were quantized by Western blotting, immunohistochemistry, or immunofluorescence. Xenograft models were constructed to confirm the role of BCAT1 in vivo.ResultsBCAT1 was overexpressed in GC patients and associated with lower survival. BCAT1 expression was correlated with proliferation-, invasion-, or angiogenesis-related markers expression and pathways. Silencing BCAT1 expression suppressed cell viability, colony formation, cycle progression, invasion, and angiogenesis of BGC823 cells, as well as the tumor growth of xenograft models, whereas overexpressing BCAT1 had the opposite results both in vitro and in vivo. Bioinformatics analysis and Western blotting demonstrated that BCAT1 activated the PI3K/AKT/mTOR pathway. The addition of LY294002 reversed the tumor growth induced by BCAT1 overexpression, further verifying this mechanism.ConclusionBCAT1 might act as an oncogene by facilitating proliferation, invasion, and angiogenesis through activation of the PI3K/AKT/mTOR pathway. This finding could aid the optimization of antiangiogenesis strategies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


Sign in / Sign up

Export Citation Format

Share Document