scholarly journals Generation of Aggregates of Mouse ES Cells that Show Symmetry Breaking, Polarisation and Emergent Collective Behaviour in vitro.

2014 ◽  
Author(s):  
Peter Baillie-Johnson ◽  
Susanne C van den Brink ◽  
Tina Balayo ◽  
David A Turner ◽  
Alfonso Martinez Arias

Dissociated mouse embryonic stem (ES) cells were cultured to form aggregates in small volumes of basal medium in U-bottomed, non tissue-culture-treated 96-well plates and subsequently maintained in suspension culture. After growth for 48 hours, the aggregates are competent to respond to ubiquitous experimental signals which result in their symmetry-breaking and generation of defined polarised structures by 96 hours. It is envisaged that this system can be applied both to the study of early developmental events and more broadly to the processes of self-organisation and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo but unobtainable from conventional adherent culture.

2009 ◽  
Vol 21 (1) ◽  
pp. 67 ◽  
Author(s):  
Tetsuya S. Tanaka

The embryonic stem (ES) cell is a stem cell derived from early embryos that can indefinitely repeat self-renewing cell division cycles as an undifferentiated cell in vitro and give rise to all specialised cell types in the body. However, manipulating ES cell differentiation in vitro is a challenge due to, at least in part, heterogeneous gene induction. Recent experimental evidence has demonstrated that undifferentiated mouse ES cells maintained in culture exhibit heterogeneous expression of Dppa3, Nanog, Rex1, Pecam1 and Zscan4 as well as genes (Brachyury/T, Rhox6/9 and Twist2) normally expressed in specialised cell types. The Nanog-negative, Rex1-negative or T-positive ES cell subpopulation has a unique differentiation potential. Thus, studying the mechanism that generates ES cell subpopulations will improve manipulation of ES cell fate and help our understanding of the nature of embryonic development.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1265-1275 ◽  
Author(s):  
Abby L. Olsen ◽  
David L. Stachura ◽  
Mitchell J. Weiss

Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases.


Development ◽  
1996 ◽  
Vol 122 (8) ◽  
pp. 2339-2348 ◽  
Author(s):  
B. Pain ◽  
M.E. Clark ◽  
M. Shen ◽  
H. Nakazawa ◽  
M. Sakurai ◽  
...  

Petitte, J.N., Clarck, M.E., Verrinder Gibbins, A. M. and R. J. Etches (1990; Development 108, 185–189) demonstrated that chicken early blastoderm contains cells able to contribute to both somatic and germinal tissue when injected into a recipient embryo. However, these cells were neither identified nor maintained in vitro. Here, we show that chicken early blastoderm contains cells characterised as putative avian embryonic stem (ES) cells that can be maintained in vitro for long-term culture. These cells exhibit features similar to those of murine ES cells such as typical morphology, strong reactivity toward specific antibodies, cytokine-dependent extended proliferation and high telomerase activity. These cells also present high capacities to differentiate in vitro into various cell types including cells from ectodermic, mesodermic and endodermic lineages. Production of chimeras after injection of the cultivated cells reinforced the view that our culture system maintains in vitro some avian putative ES cells.


2020 ◽  
Vol 6 (35) ◽  
pp. eabb5820 ◽  
Author(s):  
Zhiming Li ◽  
Xu Hua ◽  
Albert Serra-Cardona ◽  
Xiaowei Xu ◽  
Songlin Gan ◽  
...  

How parental histones, the carriers of epigenetic modifications, are deposited onto replicating DNA remains poorly understood. Here, we describe the eSPAN method (enrichment and sequencing of protein-associated nascent DNA) in mouse embryonic stem (ES) cells and use it to detect histone deposition onto replicating DNA strands with a relatively small number of cells. We show that DNA polymerase α (Pol α), which synthesizes short primers for DNA synthesis, binds histone H3-H4 preferentially. A Pol α mutant defective in histone binding in vitro impairs the transfer of parental H3-H4 to lagging strands in both yeast and mouse ES cells. Last, dysregulation of both coding genes and noncoding endogenous retroviruses is detected in mutant ES cells defective in parental histone transfer. Together, we report an efficient eSPAN method for analysis of DNA replication–linked processes in mouse ES cells and reveal the mechanism of Pol α in parental histone transfer.


2009 ◽  
Vol 21 (9) ◽  
pp. 100
Author(s):  
M. B. Morris ◽  
N. Hamra ◽  
A. C. Lonic ◽  
F. Felquer

The phenotypic status of embryonic stem (ES) cells is controlled in part by signalling pathways which translate inputs mediated by extracellular molecules. An important extracellular protagonist in mouse ES cells is LIF (leukaemia inhibitory factor) which interacts with the gp130–LIFR receptor complex to activate a number of downstream signalling pathways, including the STAT3, MEK/ERK and PI3K/Akt. These pathways, together with others, interact in complex and sometimes competing ways to generate the well-known characteristics of mouse ES cells of self-renewal, high rates of proliferation, and pluripotence. The addition of a second molecule, L-proline, to the extracellular environment alters the pluripotent status of mouse ES cells, converting them to a second pluripotent population equivalent to the primitive ectoderm of the pre-gastrulating embryo. This conversion, from ES cells to primitive ectoderm-like cells, primes the latter for directed differentiation to specific cell types (1). Here we show, using inhibitor studies and kinome array analysis, that this small molecule appears to work by (i) changing the balance in activity of signalling pathways already stimulated by LIF and (ii) activating additional signalling pathways. Specifically, L-proline rapidly further activates the LIF-stimulated MEK/ERK pathway, tipping the balance in favour of primitive-ectoderm formation and away from ES-cell self-renewal sustained by LIF-mediated activation of the STAT3 pathway. In addition, L-proline rapidly stimulates other pathways including p38, mTOR and PI3K/Akt each of which contributes, to a greater or lesser extent, to the conversion to primitive ectoderm-like cells. These results indicate that (i) L-proline acts in novel ways to stimulate embryo-like developmental progression in ES cells and (ii) through the addition of small, nontoxic activators and inhibitors of signalling pathways, the differentiation of pluripotent ES cells might be controlled sufficiently well for the homogeneous production of specific cell types suitable for use in animal models of human disease.


2012 ◽  
Vol 302 (3) ◽  
pp. C494-C504 ◽  
Author(s):  
José A. Rodríguez-Gómez ◽  
Konstantín L. Levitsky ◽  
José López-Barneo

Ion channels participate in cell homeostasis and are involved in the regulation of proliferation and differentiation in several cell types; however, their presence and function in embryonic stem (ES) cells are poorly studied. We have investigated the existence of voltage-dependent inward currents in mouse ES cells and their ability to modulate proliferation and self-renewal. Patch-clamped ES cells had inactivating tetrodotoxin (TTX)-sensitive Na+ currents as well as transient Ca2+ currents abolished by the external application of Ni2+. Biophysical and pharmacological data indicated that the Ca2+ current is predominantly mediated by T-type (Cav3.2) channels. The number of cells expressing T-type channels and Cav3.2 mRNA levels increased at the G1/S transition of the cell cycle. TTX had no effect on ES cell proliferation. However, blockade of T-type Ca2+ currents with Ni2+ induced a decrease in proliferation and alkaline phosphatase positive colonies as well as reduced expression of Oct3/4 and Nanog, all indicative of loss in self-renewal capacity. Decreased alkaline phosphatase and Oct3/4 expression were also observed in cells subjected to small interfering RNA-induced knockdown for T-type (Cav3.2) Ca2+ channels, thus partially recapitulating the pharmacological effects on self-renewal. These results indicate that Cav3.2 channel expression in ES cells is modulated along the cell cycle being induced at late G1 phase. They also suggest that these channels are involved in the maintenance of the undifferentiated state of mouse ES cells. We propose that Ca2+ entry mediated by Cav3.2 channels might be one of the intracellular signals that participate in the complex network responsible for ES cell self-renewal.


2008 ◽  
Vol 115 (2) ◽  
pp. 43-55 ◽  
Author(s):  
Cecilia Annerén

Pluripotent ES (embryonic stem) cells can be expanded in culture and induced to differentiate into a wide range of cell types. Self-renewal of ES cells involves proliferation with concomitant suppression of differentiation. Some critical and conserved pathways regulating self-renewal in both human and mouse ES cells have been identified, but there is also evidence suggesting significant species differences. Cytoplasmic and receptor tyrosine kinases play important roles in proliferation, survival, self-renewal and differentiation in stem, progenitor and adult cells. The present review focuses on the role of tyrosine kinase signalling for maintenance of the undifferentiated state, proliferation, survival and early differentiation of ES cells.


2012 ◽  
Vol 529-530 ◽  
pp. 385-390
Author(s):  
Koichi Imai ◽  
Fumio Watari ◽  
Kazuaki Nakamura ◽  
Akito Tanoue

The risks of nanomaterials for future generations should be elucidated. Thus, it is important to establish an experimental method to accurately examine embryotoxicity. We have conducted anin vitroembryotoxicity test with mouse ES cells to examine the embryotoxicities of various nanomaterials. In this study, the C60 fullerene did not influence the differentiation of ES-D3 cells and "non embryotoxicity". In the future, the biological safety should be comprehensively examined by improving dispersion in medium.


2005 ◽  
Vol 33 (6) ◽  
pp. 1522-1525 ◽  
Author(s):  
K. Takahashi ◽  
M. Murakami ◽  
S. Yamanaka

Mouse ES (embryonic stem) cells maintain pluripotency with robust proliferation in vitro. ES cells share some similarities with cancer cells, such as anchorage-independent growth, loss of contact inhibition and tumour formation. After differentiation, ES cells lose pluripotency and tumorigenicity. Recent studies showed that the PI3K (phosphoinositide 3-kinase) pathway is important for proliferation, survival and maintenance of pluripotency in ES cells. The PI3K pathway is activated by growth factors and cytokines including insulin and leukaemia inhibitory factor. In addition to these exogenous factors, the PI3K pathway is endogenously activated by the constitutively active Ras family protein ERas (ES cell-expressed Ras). The PI3K pathway utilizes multiple downstream effectors including mTOR (mammalian target of rapamycin), which we have shown to be essential for proliferation in mouse ES cells and early embryos.


2012 ◽  
Vol 24 (1) ◽  
pp. 222
Author(s):  
A. Kusanagi ◽  
J. Yamasaki ◽  
C. Iwatani ◽  
H. Tsuchiya ◽  
R. Torii

Human and mouse embryonic stem (ES) cells are derived from the inner cell mass of preimplantation blastocysts and human ES cells were long thought to be equivalent to mouse ES cells, despite clear morphological difference and different signalling pathways to maintain their pluripotency between these two ES cell types. Mouse ES cells depend on leukemia inhibitory factor (LIF) and bone morphogenic protein 4 (BMP4) signalling, whereas their human counterparts rely on basic fibroblast growth factor (bFGF) and activin A signalling. The biggest difference of two ES cells is the ability of chimera formation and mouse ES cells can contribute chimera but primate ES cells fails to do that. Monkey ES cells in primates only can be tested for chimera formation in vivo due to the ethical issue and cynomolgus monkey is the most common nonhuman primate to be used for the safety study of drug discoveries. The objective of this study was to develop novel cynomolgus monkey ES cells that have similar biological properties with mouse ES cell and our ultimate goal is to establish germline competent nonhuman primate ES cells. Ovarian stimulation and oocyte collection were carried out for the derivation of ES cells as previously described by Torii et al. Briefly, GnRH (0.9 mg/head) was administered to cynomolgus monkey and two weeks later, a micro infusion pump (iPRECIO™, Primetech Corp) contains FSH was implanted subcutaneously. Follicular aspiration was then performed 40 h after hCG injection and metaphase II oocytes were fertilized by intracytoplasmic sperm injection (ICSI). Cynomolgus monkey ES cells were then established under mouse ES cell conditions such as LIF/STAT signalling and a dome tree-dimensional (3D) morphology nonhuman primate ES cells were selected. On the other hands, ES cells that were established with the presence of basic FGF showed conventional layer-type morphology. Dome-type ES cells express pluripotent transcriptional factors such as Oct-3/4, Nonog and Sox2 as same as layer-type ES cells and both ES lines were capable of multilineage differentiations in vitro after embryoid body formation. Dome-type nonhuman ES cells can also form teratomas and differentiated into all three germ layers when grafted into immunodeficiency mice. For fluorescent gene delivery to nonhuman primate ES cells, feeder-free condition was applied and CAG-GFP vector was transfected into ES cells using Neon electroporation system (Invitrogen Inc.) for the tracing ES cells in the transplantation study. In this study, we have established dome-type ES cell lines that similar to mouse ES cells in morphology and signalling pathway. Dome-type nonhuman primate ES cells express pluripotent gene markers and prove their pluripotency both of in vitro and in vivo, in addition, these modifications would be important to create germline competent ES cells.


Sign in / Sign up

Export Citation Format

Share Document