scholarly journals RNA-seq: primary cells, cell lines and heat stress

2015 ◽  
Author(s):  
Carl J Schmdt ◽  
Elizabeth M Pritchett ◽  
Liang Sun ◽  
Richard V.N. Davis ◽  
Allen Hubbard ◽  
...  

Transcriptome analysis by RNA-seq has emerged as a high-throughput, cost-effective means to evaluate the expression pattern of genes in organisms. Unlike other methods, such as microarrays or quantitative PCR, RNA-seq is a target free method that permits analysis of essentially any RNA that can be amplified from a cell or tissue. At its most basic, RNA-seq can determine individual gene expression levels by counting the number of times a particular transcript was found in the sequence data. Transcript levels can be compared across multiple samples to identify differentially expressed genes and infer differences in biological states between the samples. We have used this approach to examine gene expression patterns in chicken and human cells, with particular interest in determining response to heat stress.

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 360
Author(s):  
Guodong Rao ◽  
Jianguo Zhang ◽  
Xiaoxia Liu ◽  
Xue Li ◽  
Chenhe Wang

Olive oil has been favored as high-quality edible oil because it contains balanced fatty acids (FAs) and high levels of minor components. The contents of FAs and minor components are variable in olive fruits of different color at harvest time, which render it difficult to determine the optimal harvest strategy for olive oil producing. Here, we combined metabolome, Pacbio Iso-seq, and Illumina RNA-seq transcriptome to investigate the association between metabolites and gene expression of olive fruits at harvest time. A total of 34 FAs, 12 minor components, and 181 other metabolites (including organic acids, polyols, amino acids, and sugars) were identified in this study. Moreover, we proposed optimal olive harvesting strategy models based on different production purposes. In addition, we used the combined Pacbio Iso-seq and Illumina RNA-seq gene expression data to identify genes related to the biosynthetic pathways of hydroxytyrosol and oleuropein. These data lay the foundation for future investigations of olive fruit metabolism and gene expression patterns, and provide a method to obtain olive harvesting strategies for different production purposes.


2020 ◽  
Author(s):  
Ramon Viñas ◽  
Tiago Azevedo ◽  
Eric R. Gamazon ◽  
Pietro Liò

AbstractA question of fundamental biological significance is to what extent the expression of a subset of genes can be used to recover the full transcriptome, with important implications for biological discovery and clinical application. To address this challenge, we present GAIN-GTEx, a method for gene expression imputation based on Generative Adversarial Imputation Networks. In order to increase the applicability of our approach, we leverage data from GTEx v8, a reference resource that has generated a comprehensive collection of transcriptomes from a diverse set of human tissues. We compare our model to several standard and state-of-the-art imputation methods and show that GAIN-GTEx is significantly superior in terms of predictive performance and runtime. Furthermore, our results indicate strong generalisation on RNA-Seq data from 3 cancer types across varying levels of missingness. Our work can facilitate a cost-effective integration of large-scale RNA biorepositories into genomic studies of disease, with high applicability across diverse tissue types.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11875
Author(s):  
Tomoko Matsuda

Large volumes of high-throughput sequencing data have been submitted to the Sequencing Read Archive (SRA). The lack of experimental metadata associated with the data makes reuse and understanding data quality very difficult. In the case of RNA sequencing (RNA-Seq), which reveals the presence and quantity of RNA in a biological sample at any moment, it is necessary to consider that gene expression responds over a short time interval (several seconds to a few minutes) in many organisms. Therefore, to isolate RNA that accurately reflects the transcriptome at the point of harvest, raw biological samples should be processed by freezing in liquid nitrogen, immersing in RNA stabilization reagent or lysing and homogenizing in RNA lysis buffer containing guanidine thiocyanate as soon as possible. As the number of samples handled simultaneously increases, the time until the RNA is protected can increase. Here, to evaluate the effect of different lag times in RNA protection on RNA-Seq data, we harvested CHO-S cells after 3, 5, 6, and 7 days of cultivation, added RNA lysis buffer in a time course of 15, 30, 45, and 60 min after harvest, and conducted RNA-Seq. These RNA samples showed high RNA integrity number (RIN) values indicating non-degraded RNA, and sequence data from libraries prepared with these RNA samples was of high quality according to FastQC. We observed that, at the same cultivation day, global trends of gene expression were similar across the time course of addition of RNA lysis buffer; however, the expression of some genes was significantly different between the time-course samples of the same cultivation day; most of these differentially expressed genes were related to apoptosis. We conclude that the time lag between sample harvest and RNA protection influences gene expression of specific genes. It is, therefore, necessary to know not only RIN values of RNA and the quality of the sequence data but also how the experiment was performed when acquiring RNA-Seq data from the database.


Author(s):  
Jieping Ye ◽  
Ravi Janardan ◽  
Sudhir Kumar

Understanding the roles of genes and their interactions is one of the central challenges in genome research. One popular approach is based on the analysis of microarray gene expression data (Golub et al., 1999; White, et al., 1999; Oshlack et al., 2007). By their very nature, these data often do not capture spatial patterns of individual gene expressions, which is accomplished by direct visualization of the presence or absence of gene products (mRNA or protein) (e.g., Tomancak et al., 2002; Christiansen et al., 2006). For instance, the gene expression pattern images of a Drosophila melanogaster embryo capture the spatial and temporal distribution of gene expression patterns at a given developmental stage (Bownes, 1975; Tsai et al., 1998; Myasnikova et al., 2002; Harmon et al., 2007). The identification of genes showing spatial overlaps in their expression patterns is fundamentally important to formulating and testing gene interaction hypotheses (Kumar et al., 2002; Tomancak et al., 2002; Gurunathan et al., 2004; Peng & Myers, 2004; Pan et al., 2006). Recent high-throughput experiments of Drosophila have produced over fifty thousand images (http://www. fruitfly.org/cgi-bin/ex/insitu.pl). It is thus desirable to design efficient computational approaches that can automatically retrieve images with overlapping expression patterns. There are two primary ways of accomplishing this task. In one approach, gene expression patterns are described using a controlled vocabulary, and images containing overlapping patterns are found based on the similarity of textual annotations. In the second approach, the most similar expression patterns are identified by a direct comparison of image content, emulating the visual inspection carried out by biologists [(Kumar et al., 2002); see also www.flyexpress.net]. The direct comparison of image content is expected to be complementary to, and more powerful than, the controlled vocabulary approach, because it is unlikely that all attributes of an expression pattern can be completely captured via textual descriptions. Hence, to facilitate the efficient and widespread use of such datasets, there is a significant need for sophisticated, high-performance, informatics-based solutions for the analysis of large collections of biological images.


2020 ◽  
pp. 160-170
Author(s):  
John Vivian ◽  
Jordan M. Eizenga ◽  
Holly C. Beale ◽  
Olena M. Vaske ◽  
Benedict Paten

PURPOSE Many antineoplastics are designed to target upregulated genes, but quantifying upregulation in a single patient sample requires an appropriate set of samples for comparison. In cancer, the most natural comparison set is unaffected samples from the matching tissue, but there are often too few available unaffected samples to overcome high intersample variance. Moreover, some cancer samples have misidentified tissues of origin or even composite-tissue phenotypes. Even if an appropriate comparison set can be identified, most differential expression tools are not designed to accommodate comparisons to a single patient sample. METHODS We propose a Bayesian statistical framework for gene expression outlier detection in single samples. Our method uses all available data to produce a consensus background distribution for each gene of interest without requiring the researcher to manually select a comparison set. The consensus distribution can then be used to quantify over- and underexpression. RESULTS We demonstrate this method on both simulated and real gene expression data. We show that it can robustly quantify overexpression, even when the set of comparison samples lacks ideally matched tissue samples. Furthermore, our results show that the method can identify appropriate comparison sets from samples of mixed lineage and rediscover numerous known gene-cancer expression patterns. CONCLUSION This exploratory method is suitable for identifying expression outliers from comparative RNA sequencing (RNA-seq) analysis for individual samples, and Treehouse, a pediatric precision medicine group that leverages RNA-seq to identify potential therapeutic leads for patients, plans to explore this method for processing its pediatric cohort.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Harpreet Kaur ◽  
Sherry Bhalla ◽  
Dilraj Kaur ◽  
Gajendra PS Raghava

Abstract Liver cancer is the fourth major lethal malignancy worldwide. To understand the development and progression of liver cancer, biomedical research generated a tremendous amount of transcriptomics and disease-specific biomarker data. However, dispersed information poses pragmatic hurdles to delineate the significant markers for the disease. Hence, a dedicated resource for liver cancer is required that integrates scattered multiple formatted datasets and information regarding disease-specific biomarkers. Liver Cancer Expression Resource (CancerLivER) is a database that maintains gene expression datasets of liver cancer along with the putative biomarkers defined for the same in the literature. It manages 115 datasets that include gene-expression profiles of 9611 samples. Each of incorporated datasets was manually curated to remove any artefact; subsequently, a standard and uniform pipeline according to the specific technique is employed for their processing. Additionally, it contains comprehensive information on 594 liver cancer biomarkers which include mainly 315 gene biomarkers or signatures and 178 protein- and 46 miRNA-based biomarkers. To explore the full potential of data on liver cancer, a web-based interactive platform was developed to perform search, browsing and analyses. Analysis tools were also integrated to explore and visualize the expression patterns of desired genes among different types of samples based on individual gene, GO ontology and pathways. Furthermore, a dataset matrix download facility was provided to facilitate the users for their extensive analysis to elucidate more robust disease-specific signatures. Eventually, CancerLivER is a comprehensive resource which is highly useful for the scientific community working in the field of liver cancer.Availability: CancerLivER can be accessed on the web at https://webs.iiitd.edu.in/raghava/cancerliver.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 387
Author(s):  
Michelle Hsu ◽  
Mehek Dedhia ◽  
Wim Crusio ◽  
Anna Delprato

Background: The APOE gene encodes apolipoprotein ε (ApoE), a protein that associates with lipids to form lipoproteins that package and traffic cholesterol and lipids through the bloodstream. There are at least three different alleles of the APOE gene: APOE2, APOE3, and APOE4. The APOE4 allele increases an individual's risk for developing late-onset Alzheimer disease (AD) in a dose-dependent manner. Sex differences have been reported for AD susceptibility, age of onset, and symptom progression, with females being more affected than males. Methods: In this study, we use a systems biology approach to examine gene expression patterns in the brains of aged female and male individuals who are positive for the APOE4 allele in order to identify possible sex-related differences that may be relevant to AD. Results: Based on correlation analysis, we identified a large number of genes with an expression pattern similar to that of APOE in APOE4-positive individuals. The number of these genes was much higher in APOE4-positive females than in APOE4-positive males, who in turn had more of such genes than APOE4-negative control groups. Conclusions: Profiling of these genes using Gene Ontology (GO) term classification, pathway enrichment, and differential expression analysis supports the idea of a transcriptional role of APOE with respect to sex differences and AD.


2020 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zijian Ni ◽  
Michael Collins ◽  
Mark E. Burkard ◽  
Christina Kendziorski ◽  
...  

AbstractBackgroundSingle-cell RNA-seq (scRNA-seq) enables the profiling of genome-wide gene expression at the single-cell level and in so doing facilitates insight into and information about cellular heterogeneity within a tissue. Perhaps nowhere is this more important than in cancer, where tumor and tumor microenvironment heterogeneity directly impact development, maintenance, and progression of disease. While publicly available scRNA-seq cancer datasets offer unprecedented opportunity to better understand the mechanisms underlying tumor progression, metastasis, drug resistance, and immune evasion, much of the available information has been underutilized, in part, due to the lack of tools available for aggregating and analysing these data.ResultsWe present CHARacterizing Tumor Subpopulations (CHARTS), a computational pipeline and web application for analyzing, characterizing, and integrating publicly available scRNA-seq cancer datasets. CHARTS enables the exploration of individual gene expression, cell type, malignancy-status, differentially expressed genes, and gene set enrichment results in subpopulations of cells across multiple tumors and datasets.ConclusionCHARTS is an easy to use, comprehensive platform for exploring single-cell subpopulations within tumors across the ever-growing collection of public scRNA-seq cancer datasets. CHARTS is freely available at charts.morgridge.org.


Sign in / Sign up

Export Citation Format

Share Document