scholarly journals Landscape and dynamics of transcription initiation in the malaria parasitePlasmodium falciparum

2015 ◽  
Author(s):  
Sophie Adjalley ◽  
Christophe Chabbert ◽  
Bernd Klaus ◽  
Vicent Pelechano ◽  
Lars Steinmetz

The lack of a comprehensive map of transcription start sites (TSS) across the highly AT-rich genome ofP. falciparumhas hindered progress towards deciphering the molecular mechanisms that underly the timely regulation of gene expression in this malaria parasite. Using high-throughput sequencing technologies, we generated a comprehensive atlas of transcription initiation events at single nucleotide-resolution during the parasite intra-erythrocytic developmental cycle. This detailed analysis of TSS usage enabled us to define architectural features of plasmodial promoters. We demonstrate that TSS selection and strength are constrained by local nucleotide composition. Furthermore, we provide evidence for coordinate and stage-specific TSS usage from distinct sites within the same transcriptional unit, thereby producing transcript isoforms, a subset of which are developmentally regulated. This work offers a framework for further investigations into the interactions between genomic sequences and regulatory factors governing the complex transcriptional program of this major human pathogen.

Genome ◽  
2020 ◽  
Author(s):  
Tasnim H. BEACON ◽  
James R DAVIE

The chicken model organism has advanced the areas of developmental biology, virology, immunology, oncology, epigenetic regulation of gene expression, conservation biology, and genomics of domestication. Further, the chicken model organism has aided in our understanding of human disease. Through the recent advances in high-throughput sequencing and bioinformatic tools, researchers have successfully identified sequences in the chicken genome that have human orthologs, improving mammalian genome annotation. In this review, we highlight the importance of chicken as an animal model in basic and pre-clinical research. We will present the importance of chicken in poultry epigenetics and in genomic studies that trace back to their ancestor, the last link between human and chicken tree of life. There are still many genes of unknown function in the chicken genome yet to be characterized. By taking advantage of recent sequencing technologies, it is possible to gain further insight into the chicken epigenome.


Author(s):  
Zhaolian Lu ◽  
Zhenguo Lin

ABSTRACTThe molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). Intriguingly, a distinct way of locating transcription start sites (TSSs) was found in a budding yeast Saccharomyces cerevisiae (“scanning model”). The origin of the “scanning model” and its underlying genetic mechanisms remain unsolved. Herein, we applied genomic approaches to address these questions. We first identified TSSs at a single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5’boundaries of protein-coding genes. We then infer the initiation mechanism of a species based on its TSS maps and genome sequences. We found that the “scanning model” had originated after the split of Yarrowia lipolytica and the rest of budding yeasts. An adenine-rich region immediately upstream of TSS had appeared during the evolution of the “scanning model” species, which might facilitate TSS selection in these species. Both initiation mechanisms share a strong preference for pyrimidine-purine dinucleotides surrounding the TSS. Our results suggested that the purine is required for accurately recruiting the first nucleotide, increasing the chance of being capped during mRNA maturation, which is critical for efficient translation initiation. Based on our findings, we proposed a model of TSS selection for the “scanning model” species. Besides, our study also demonstrated that the intrinsic sequence feature primarily determines the distribution of initiation activities within a core promoter (core promoter shape).


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 462-462
Author(s):  
Anna M Jankowska ◽  
Yun Huang ◽  
Myunggon Ko ◽  
Utz J Pape ◽  
Hideki Makishima ◽  
...  

Abstract Abstract 462 In myelodysplastic syndrome (MDS), mutations in genes affecting epigenetic regulation constitute a link between genomic and epigenetic instability. Previously, we and others described mutations in TET2, coding for a 2-oxyglutarate-dependent methylcytosine dioxygenase, which converts 5-methycytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). Subsequently, dysfunction of wild type TET2 was mechanistically linked to neomorphic IDH mutations which deplete 2-oxyglutarate and produce a competitive inhibitor, 2-hydroxyglutarate. Previously, we established analytic tools to indirectly quantify 5-hmC content in leukemic genomes: in patients with myeloid malignancies 5-hmC levels are decreased as compared to healthy controls (p=1.8e-09). A decrease in 5-hmC levels correlated with dysfunction of TET2 as a consequence of inactivating hypomorphic mutations. Nevertheless, while in a majority of patients with decreased 5hmC levels TET2 mutations can be found, in a substantial minority of cases no explanation for the 5hmC deficiency has been found; down-modulation of TET2 mRNA and protein expression was absent and mutations in TET1 and TET3 have not been identified. Thus, other currently unidentified proteins may be directly or indirectly (via regulation of TET activity) involved in the deregulation of 5hmC levels in TET2 and IDH1/2-mutation-negative cases with low 5-hmC. To further investigate this issue we first characterized on a molecular levels patients with low 5-hmC using various approaches. SNP-A karyotyping failed to identify recurrent chromosomal defects in these patients that could point towards defects in pathogenic genes involved in the regulation of 5-hmC levels. We also screened 107 MDS patients to correlate of genomic 5-hmC content and the presence of recurrent mutations including IDH1/2, DNMT3A, ASXL1 and RUNX1 genes (as well as TET2). Within these genes, except for an association with TET2 mutations, a positive correlation with low 5-hmC levels was found only for IDH1/2 mutant cases (p=.05, n=5), whereas no correlation has been established for DNMT3A (p=.119, n=12), ASXL1 (p=.434, n=21) and RUNX1 (p=.602, n=22) mutant cases. While TET2 and IDH mutations were rarely seen together (n=1), none of the other studied gene mutations were mutually exclusive with TET2, suggesting contributions of defects in novel yet not identified genes. Several other genes similar to TET or IDH proteins, or hypothetically linked to DNA demethylation pathways could, at least theoretically, affect 5-hmC content, including for instance D2HGDH and the ELP gene family. However, no mutations were identified in these patients, except for identification of yet unknown SNPs in D2HGDH and ELP4 in some patients with unexplained low 5-hmC levels. In addition to the targeted approach we have also applied next generation sequencing technologies and sequenced whole exomes of malignant and non-affected cells (paired-end (2×100) Illumina HiSeq 2000) to identify novel acquired determinants of 5-mC hydroxymethylation in two representative patients. By using a selective algorithm, 18 overlapping potential somatic alterations in these patients were found in genes which could functionally affect 5-hmC content. In addition, several other mutated genes have been identified in each patient; these are being further investigated in other patients with low 5-hmC levels. Sanger sequencing was applied to confirm the presence of previously detected mutations in NF1 and KRAS, as well as all novel mutations, for instance in BRCC3 and SF3B1, in these patients. In sum, our results provide novel insights into the molecular mechanisms underlying MDS pathophysiology and describe the possibility that the TET family enzymes can act together with other putative proteins linked to DNA demethylation pathways. The use of high throughput sequencing technologies increase the probability of identification of novel changes which can be linked to functional consequences in these patients, ultimately furthering the understanding its role in genomic stability in MDS. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 35 (17) ◽  
pp. 2957-2965 ◽  
Author(s):  
Meng Zhang ◽  
Fuyi Li ◽  
Tatiana T Marquez-Lago ◽  
André Leier ◽  
Cunshuo Fan ◽  
...  

Abstract Motivation Promoters are short DNA consensus sequences that are localized proximal to the transcription start sites of genes, allowing transcription initiation of particular genes. However, the precise prediction of promoters remains a challenging task because individual promoters often differ from the consensus at one or more positions. Results In this study, we present a new multi-layer computational approach, called MULTiPly, for recognizing promoters and their specific types. MULTiPly took into account the sequences themselves, including both local information such as k-tuple nucleotide composition, dinucleotide-based auto covariance and global information of the entire samples based on bi-profile Bayes and k-nearest neighbour feature encodings. Specifically, the F-score feature selection method was applied to identify the best unique type of feature prediction results, in combination with other types of features that were subsequently added to further improve the prediction performance of MULTiPly. Benchmarking experiments on the benchmark dataset and comparisons with five state-of-the-art tools show that MULTiPly can achieve a better prediction performance on 5-fold cross-validation and jackknife tests. Moreover, the superiority of MULTiPly was also validated on a newly constructed independent test dataset. MULTiPly is expected to be used as a useful tool that will facilitate the discovery of both general and specific types of promoters in the post-genomic era. Availability and implementation The MULTiPly webserver and curated datasets are freely available at http://flagshipnt.erc.monash.edu/MULTiPly/. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 48 (4) ◽  
pp. 1545-1556 ◽  
Author(s):  
Qianpeng Li ◽  
Zhao Li ◽  
Changrui Feng ◽  
Shuai Jiang ◽  
Zhang Zhang ◽  
...  

LncRNAs (long non-coding RNAs) are pervasively transcribed in the human genome and also extensively involved in a variety of essential biological processes and human diseases. The comprehensive annotation of human lncRNAs is of great significance in navigating the functional landscape of the human genome and deepening the understanding of the multi-featured RNA world. However, the unique characteristics of lncRNAs as well as their enormous quantity have complicated and challenged the annotation of lncRNAs. Advances in high-throughput sequencing technologies give rise to a large volume of omics data that are generated at an unprecedented rate and scale, providing possibilities in the identification, characterization and functional annotation of lncRNAs. Here, we review the recent important discoveries of human lncRNAs through analysis of various omics data and summarize specialized lncRNA database resources. Moreover, we highlight the multi-omics integrative analysis as a powerful strategy to efficiently discover and characterize the functional lncRNAs and elucidate their potential molecular mechanisms.


Mobile DNA ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Aurélie Teissandier ◽  
Nicolas Servant ◽  
Emmanuel Barillot ◽  
Deborah Bourc’his

Abstract Background Sequencing technologies give access to a precise picture of the molecular mechanisms acting upon genome regulation. One of the biggest technical challenges with sequencing data is to map millions of reads to a reference genome. This problem is exacerbated when dealing with repetitive sequences such as transposable elements that occupy half of the mammalian genome mass. Sequenced reads coming from these regions introduce ambiguities in the mapping step. Therefore, applying dedicated parameters and algorithms has to be taken into consideration when transposable elements regulation is investigated with sequencing datasets. Results Here, we used simulated reads on the mouse and human genomes to define the best parameters for aligning transposable element-derived reads on a reference genome. The efficiency of the most commonly used aligners was compared and we further evaluated how transposable element representation should be estimated using available methods. The mappability of the different transposon families in the mouse and the human genomes was calculated giving an overview into their evolution. Conclusions Based on simulated data, we provided recommendations on the alignment and the quantification steps to be performed when transposon expression or regulation is studied, and identified the limits in detecting specific young transposon families of the mouse and human genomes. These principles may help the community to adopt standard procedures and raise awareness of the difficulties encountered in the study of transposable elements.


2020 ◽  
Author(s):  
Lin Liu ◽  
Guangyu Wang ◽  
Liguo Wang ◽  
Chunlei Yu ◽  
Mengwei Li ◽  
...  

Abstract Background: Glioma is one of the most common malignant brain tumors and exhibits low resection rate and high recurrence risk. Although a large number of glioma studies powered by high-throughput sequencing technologies have led to massive multi-omics datasets, there lacks of comprehensive integration of glioma datasets for uncovering candidate biomarker genes.Results: In this study, we collected a large-scale assemble of multi-omics multi-cohort datasets from worldwide public resources, involving a total of 16,939 samples across 19 independent studies. Through comprehensive molecular profiling across different datasets, we revealed that PRKCG (Protein Kinase C Gamma), a brain-specific gene detectable in cerebrospinal fluid, is closely associated with glioma. Specifically, it presents lower expression and higher methylation in glioma samples compared with normal samples. PRKCG expression/methylation change from high to low is indicative of glioma progression from low-grade to high-grade and high RNA expression is suggestive of good survival. Importantly, PRKCG in combination with MGMT is effective to predict survival outcomes in a more precise manner.Conclusions: PRKCG bears the great potential for glioma diagnosis, prognosis and therapy, and PRKCG-like genes may represent a set of important genes associated with different molecular mechanisms in glioma tumorigenesis. Our study indicates the importance of computational integrative multi-omics data analysis and represents a data-driven scheme toward precision tumor subtyping and accurate personalized healthcare.


2013 ◽  
Vol 33 (22) ◽  
pp. 4504-4516 ◽  
Author(s):  
Giorgio Giacomo Galli ◽  
Matteo Carrara ◽  
Chiara Francavilla ◽  
Kristian Honnens de Lichtenberg ◽  
Jesper Velgaard Olsen ◽  
...  

PRDM proteins belong to the SET domain protein family, which is involved in the regulation of gene expression. Although few PRDM members possess histone methyltransferase activity, the molecular mechanisms by which the other members exert transcriptional regulation remain to be delineated. In this study, we find that Prdm5 is highly expressed in mouse embryonic stem (mES) cells and exploit this cellular system to characterize molecular functions of Prdm5. By combining proteomics and next-generation sequencing technologies, we identify Prdm5 interaction partners and genomic occupancy. We demonstrate that although Prdm5 is dispensable for mES cell maintenance, it directly targets genomic regions involved in early embryonic development and affects the expression of a subset of developmental regulators during cell differentiation. Importantly, Prdm5 interacts with Ctcf, cohesin, and TFIIIC and cooccupies genomic loci. In summary, our data indicate how Prdm5 modulates transcription by interacting with factors involved in genome organization in mouse embryonic stem cells.


2017 ◽  
Author(s):  
Sai Zhang ◽  
Hailin Hu ◽  
Tao Jiang ◽  
Lei Zhang ◽  
Jianyang Zeng

AbstractMotivationTranslation initiation is a key step in the regulation of gene expression. In addition to the annotated translation initiation sites (TISs), the translation process may also start at multiple alternative TISs (including both AUG and non-AUG codons), which makes it challenging to predict TISs and study the underlying regulatory mechanisms. Meanwhile, the advent of several high-throughput sequencing techniques for profiling initiating ribosomes at single-nucleotide resolution, e.g., GTI-seq and QTI-seq, provides abundant data for systematically studying the general principles of translation initiation and the development of computational method for TIS identification.MethodsWe have developed a deep learning based framework, named TITER, for accurately predicting TISs on a genome-wide scale based on QTI-seq data. TITER extracts the sequence features of translation initiation from the surrounding sequence contexts of TISs using a hybrid neural network and further integrates the prior preference of TIS codon composition into a unified prediction framework.ResultsExtensive tests demonstrated that TITER can greatly outperform the state-of-the-art prediction methods in identifying TISs. In addition, TITER was able to identify important sequence signatures for individual types of TIS codons, including a Kozak-sequence-like motif for AUG start codon. Furthermore, the TITER prediction score can be related to the strength of translation initiation in various biological scenarios, including the repressive effect of the upstream open reading frames (uORFs) on gene expression and the mutational effects influencing translation initiation efficiency.AvailabilityTITER is available as an open-source software and can be downloaded from https://github.com/zhangsaithu/[email protected] and [email protected]


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Zengqiang Li ◽  
Zhihui Du ◽  
Jie Li ◽  
Yanming Sun

Abstract Background Bashbay sheep (Bbs) has a certain degree of resistance to Mycoplasma ovipneumoniae (Mo), however, Argali hybrid sheep (Ahs) is susceptible to Mo. To understand the molecular mechanisms underlying the difference of the susceptibility for Mo infection, RNA-sequencing technology was used to compare the transcriptomic response of the lung tissue of Mo-infected Bbs and Ahs. Results Six Bbs and six Ahs were divided into experimental group and control group respectively, all of them were experimentally infected with Mo by intratracheal injection. For collecting lung tissue samples, three Bbs and three Ahs were sacrificed on day 4 post-infection, and the others were sacrificed on day 14 post-infection. Total RNA extracted from lung tissue were used for transcriptome analyses based on high-throughput sequencing technique and bioinformatics. The results showed that 212 (146 up-regulated, 66 down-regulated) DEGs were found when comparing transcriptomic data of Bbs and Ahs at 4th dpi, besides, 311 (158 up-regulated, 153 down-regulated) DEGs were found at 14th dpi. After GO analysis, three main GO items protein glycosylation, immune response and positive regulation of gene expression were found related to Mo infection. In addition, there were 20 DEGs enriched in these above items, such as SPLUC1 (BPIFA1), P2X7R, DQA, HO-1 and SP-A (SFTPA-1). Conclusions These selected 20 DEGs associated with Mo infection laid the foundation for further study on the underlying molecular mechanism involved in high level of resistance to Mo expressed by Bbs, meanwhile, provided deeper understandings about the development of pathogenicity and host-pathogen interactions.


Sign in / Sign up

Export Citation Format

Share Document