scholarly journals Stochasticity in the Genotype-Phenotype Map: Implications for the Robustness and Persistence of Bet-Hedging

2016 ◽  
Author(s):  
Daniel Nichol ◽  
Mark Robertson-Tessi ◽  
Peter Jeavons ◽  
Alexander RA Anderson

For the last few decades modern biology has focused on quantifying, understanding and mapping the genetic characteristics of cells. This genotype-driven perspective has led to significant advances in our understanding and treatment of diseases such as cancer e.g. the discovery of driver mutations and the development of molecularly-targeted therapeutics. However, this perspective has largely ignored the functional outcome of genetic changes: the cellular phenotype. In part, this is simply because phenotypes are neither easy to define or measure as they critically depend on both genotype and context. Heterogeneity at the gene scale has been known for sometime, and there has been significant effort invested in trying to find patterns within it, but much less is understood about how this heterogeneity manifests itself in phenotypic change, i.e. the genotype-phenotype map (GP-map). This mapping is not one-to-one but many-to-many and is fundamentally the junction at which both genes and environment meet to produce phenotypes. Many genotypes produce similar phenotypes, and multiple phenotypes can emerge from a single genotype. To further complicate matters, genetically identical cells in uniform environments still exhibit phenotypic heterogeneity. Therefore a central open question in biology today is how can we connect the abundance of genomic data with cell phenotypic behaviour, this is especially pertinent to the issue of treatment resistance as many therapies act on cellular phenotypes. Our focus here is to tackle the GP-map question through the use of the simplest functional mapping we can define that also captures phenotypic heterogeneity: a molecular switch. Molecular switches are ubiquitous in biology, observed in many organisms and naturally map molecular components to decisions (i.e. phenotypes). Often stochastic in nature, such switches can be the difference between life or death in environments that fluctuate unpredictably, since they will ensure that at least some offspring are adapted to future environments. For convenience we use Chemical Reaction Networks (CRNs) to define the map of gene products to phenotypes, allowing us to investigate the impact of distinct mappings (CRNs) and perturbations to them. We observe that key biological properties naturally emerge, including both robustness and persistence. Robustness may explain why such bet hedging strategies are common in biology, and not readily destroyed through mutation. Whereas persistence may explain the apparent paradox of bet-hedging - why does phenotypic hedging exist in environments beneficial to only one of the phenotypes, when selection necessarily acts against it? The structure of the molecular switch, itself subject to selection, can slow the loss of hedging to ensure a survival mechanism even against environmental catastrophes which are very rare. Critically, these properties when taken together have profound and significant implications for the emergence of treatment resistance, since the timescale of extinction depends heavily on the underlying GP-map.

2017 ◽  
pp. 132-138
Author(s):  
O.V. Paliychuk ◽  
◽  
L.Z. Polishchuk ◽  
Z.I. Rossokha ◽  
◽  
...  

The objective: determining gene polymorphism features ERS1, CYP2D6 in patients with breast cancer (RHZ) and endometrial cancer (EC) and the impact assessment studied genetic characteristics compared to receptor status (immunohistochemical determination of expression levels of ER, PR) tumors and the results of the treatment. Patients and methods. article presents the results of complex clinical, morphological, clinical-genealogical, and molecular-genetic examination of 28 females: 19 patients with breast cancer (BC), 9 patients with endometrial cancer (EC), including 5 patients with primary-multiple tumors (PMT) with and without tumor pathology aggregation in families. Results. The It was determined that in patients’ families malignant tumors of breast, uterine body and/or ovaries prevail that corresponds to Lynch type II syndrome (family cancer syndrome). Molecular-genetic examination of genomic DNA of peripheral blood and histological sections for the presence of SNPs of ESR and CYP2D6*4 genes comparing with the results of immunohistochemical study of tumors for receptors ER and PR status have not found associations between these characteristics; although among EC patients the occurrence of genotypes 397ТТ and 351АА was significantly higher comparing with BC patients (55.55% and 10.5% for genotype 397ТТ,and 15.8% for genotype 351АА, respectively). At the same time the patients with BC and primary-multiple tumors (PMT) of female reproductive system organs (FRSO) that carried mutations in BRCA1 in all the cases demonstrated positive ER and PR receptor status and adverse combinations of polymorphous variants of the genes ESR1 (397СС, 397ТС) and CYP2D6*4 (1846G, 1846GA), suggesting combined effect of these factors on the development of malignant neoplasias of FRSO in families with positive family cancer history. In BC patients, receiving standard hormone therapy with tamoxifen, those, who had genotype 1846GG of the gene CYP2D6*4, in 3 patients (15.8%) of 19 (100%) patients disease recurrence was diagnosed. Conclusion. The obtained results allow clinical use of the assessment of polymorphism frequency of the genes ESR1 and CYP2D6*4 for selection of individual hormone therapy regimens schemes for BC patients, to increase efficacy of dispensary observation after finishing of special therapy for such patients, and also personalization of complex and combined treatment regimens. Key words: breast cancer, endometrial cancer, family cancer syndrome, single nucleotide polymorphisms (SNPs) of the genes ESR1, CYP2D6*4.


Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1436-1445 ◽  
Author(s):  
Jyoti Nangalia ◽  
Emily Mitchell ◽  
Anthony R. Green

Abstract Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing–based assays have shown great promise in allowing multi-“omic” characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii350-iii350
Author(s):  
Quentin Fuchs ◽  
Marina Pierrevelcin ◽  
Christophe Papin ◽  
Monique Dontenwill ◽  
Natacha Entz-Werlé

Abstract Pediatric high-grade gliomas (pHGGs) have a very dismal prognosis and need new innovative strategy for treatment. Despite the past discovery of histone H3 driver mutations, we are not able for instance to stop this induced epigenetic remodulation. Therefore, proactive translational studies wish to go further discovering new targetable proteins in pHGG. In our past clinical work, we were able to link significantly HIF-2alpha to a worse pHGG outcome and to their treatment resistance. We designed this new work to determine in several patient-derived cell lines (6 PDCLs) with or without H3.3 mutation the variation of HIF-2alpha, its role, its induction in normoxic and hypoxic microenvironment and its transcriptional targets using RNAseq, metabolomics and ChipSeq analyses. Complementary functional analyses were performed using siRNA strategy during cultures and migration assays. Finally, preclinical drug testing involving commercialized and non-commercialized HIF-2alpha specific inhibitors in the same PDCLs were evaluating their antiproliferative and pro-apoptotic effect. Our results confirmed the central role of HIF-2alpha in cell resistance to treatment, in pHGG stemness features and its direct link with metabolism adaptation and histone interaction. After the confirmation of its frequent presence in multiple PDCLs initiated from thalamic pHGGs and DIPG, we were using inhibitors in a single and combinatorial strategy targeting HIF-2alpha plus another hypoxia biomarker (mTor). This preclinical targeting was highly effective to favor cell arrest, apoptosis and to stop cell migration. In conclusion, HIF-2alpha seem to be a major biomarker in pHGGs that might be targeted giving a useful new opportunity for pHGG treatments.


2021 ◽  
Author(s):  
Michelle van der Merwe ◽  
Gustav van Niekerk ◽  
Carla Fourie ◽  
Manisha du Plessis ◽  
Anna-Mart Engelbrecht

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 692
Author(s):  
Roosa Kaarijärvi ◽  
Heidi Kaljunen ◽  
Kirsi Ketola

Neuroendocrine plasticity and treatment-induced neuroendocrine phenotypes have recently been proposed as important resistance mechanisms underlying prostate cancer progression. Treatment-induced neuroendocrine prostate cancer (t-NEPC) is highly aggressive subtype of castration-resistant prostate cancer which develops for one fifth of patients under prolonged androgen deprivation. In recent years, understanding of molecular features and phenotypic changes in neuroendocrine plasticity has been grown. However, there are still fundamental questions to be answered in this emerging research field, for example, why and how do the prostate cancer treatment-resistant cells acquire neuron-like phenotype. The advantages of the phenotypic change and the role of tumor microenvironment in controlling cellular plasticity and in the emergence of treatment-resistant aggressive forms of prostate cancer is mostly unknown. Here, we discuss the molecular and functional links between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate cancer progression and treatment resistance. We provide an overview of the emergence of neurite-like cells in neuroendocrine prostate cancer cells and whether the reported t-NEPC pathways and proteins relate to neurodevelopmental processes like neurogenesis and axonogenesis during the development of treatment resistance. We also discuss emerging novel therapeutic targets modulating neuroendocrine plasticity.


Author(s):  
Daniel Kepple ◽  
Alfred Hubbard ◽  
Musab M Ali ◽  
Beka R Abargero ◽  
Karen Lopez ◽  
...  

Abstract Plasmodium vivax malaria was thought to be rare in Africa, but an increasing number of P. vivax cases reported across Africa and in Duffy-negative individuals challenges this conventional dogma. The genetic characteristics of P. vivax in Duffy-negative infections, the transmission of P. vivax in East Africa, and the impact of environments on transmission remain largely unknown. This study examined genetic and transmission features of P. vivax from 107 Duffy-negative and 305 Duffy-positive individuals in Ethiopia and Sudan. No clear genetic differentiation was found in P. vivax between the two Duffy groups, indicating between-host transmission. P. vivax from Ethiopia and Sudan showed similar genetic clusters, except samples from Khartoum, possibly due to distance and road density that inhibited parasite gene flow. This study is the first to show that P. vivax can transmit to and from Duffy-negative individuals and provides critical insights into the spread of P. vivax in sub-Saharan Africa.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 750
Author(s):  
Pamali Fonseka ◽  
Taeyoung Kang ◽  
Sing Chee ◽  
Sai V. Chitti ◽  
Rahul Sanwlani ◽  
...  

Neuroblastoma (NBL) is a pediatric cancer that accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc occurs in 20% of NBL patients and is considered high risk as it correlates with aggressiveness, treatment resistance and poor prognosis. Even though the treatment strategies have improved in the recent years, the survival rate of high-risk NBL patients remain poor. Hence, it is crucial to explore new therapeutic avenues to sensitise NBL. Recently, bovine milk-derived extracellular vesicles (MEVs) have been proposed to contain anti-cancer properties. However, the impact of MEVs on NBL cells is not understood. In this study, we characterised MEVs using Western blotting, NTA and TEM. Importantly, treatment of NBL cells with MEVs decreased the proliferation and increased the sensitivity of NBL cells to doxorubicin. Temporal label-free quantitative proteomics of NBL cells highlighted the depletion of proteins involved in cell metabolism, cell growth and Wnt signalling upon treatment with MEVs. Furthermore, proteins implicated in cellular senescence and apoptosis were enriched in NBL cells treated with MEVs. For the first time, this study highlights the temporal proteomic profile that occurs in cancer cells upon MEVs treatment.


2021 ◽  
Author(s):  
James D. Klingensmith

Lung invasive mucinous adenocarcinoma (IMA) is a unique histological subtype with different clinical and pathological characteristics. Despite prior genomic investigations on lung IMA, little is known about the genetic features and prognosis-related biomarkers in Chinese surgically resected lung IMA. IMA showed a distinct genetic profile, with more diversified driver mutations and co-occurrence of tumor drivers/suppressors than non-IMA. From non-IMA to mixed-IMA to pure-IMA, the frequency of EGFR (72.0 percent vs. 40.0 percent vs. 23.1 percent, p=0.002) and ALK (undetected vs. 20.0 percent vs. 26.9%, p=0.015) changes exhibited a trend of steady decline and rise, respectively. KRAS mutations were more common in pure-IMA than in mixed-IMA, however the difference was statistically insignificant (23.1 percent vs. 4.0 percent, p=0.10). Pure-IMA had a lower rate of TP53 mutation than mixed-IMA and non-IMA (23.1 percent vs. 52.0 percent vs. 56.0 percent, p=0.03). Furthermore, IMA had fewer arm-level amplifications (p=0.04) and more arm-level deletions (p=0.004) than non-IMA, with a steady drop in amplification and rise in deletion frequency from non-IMA to mixed-IMA to pure-IMA, respectively. Patients with EGFR mutations (mDFS=30.3 vs. 16.0 months, HR=0.19, P=0.027) and PI3K pathway mutations (mDFS=36.0 vs. 16.0 months, HR=0.12, P=0.023) had longer DFS than patients with poorly differentiated tumors (mDFS=14.1 vs. 28.0 months, HR=3.75, p=0.037) or KRAS mutations (mDFS=13 KRAS mutations, PI3K pathway changes, and tumor differentiation status were all shown to be independent predictors with statistically significant effects on IMA patients' clinical outcomes in multivariate analysis. Our research shed light on the genomics of Chinese lung IMA that had been surgically removed. In IMA patients with stage III illness, we also discovered many genetic characteristics that might be used as indicators for postoperative recurrence.


Sign in / Sign up

Export Citation Format

Share Document