scholarly journals 3D sorghum reconstructions from depth images enable identification of quantitative trait loci regulating shoot architecture

2016 ◽  
Author(s):  
Ryan F. McCormick ◽  
Sandra K. Truong ◽  
John E. Mullet

AbstractDissecting the genetic basis of complex traits is aided by frequent and non-destructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of Sorghum bicolor, an important grain, forage, and bioenergy crop, at multiple developmental timepoints from a greenhouse-grown recombinant inbred line population. A semi-automated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci (QTL) for standard measures of shoot architecture such as shoot height, leaf angle and leaf length, and for novel composite traits such as shoot compactness. The phenotypic variability associated with some of the QTL displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Eddie Park ◽  
Yan Jiang ◽  
Lili Hao ◽  
Jingyi Hui ◽  
Yi Xing

Abstract Background A-to-I RNA editing diversifies the transcriptome and has multiple downstream functional effects. Genetic variation contributes to RNA editing variability between individuals and has the potential to impact phenotypic variability. Results We analyze matched genetic and transcriptomic data in 49 tissues across 437 individuals to identify RNA editing events that are associated with genetic variation. Using an RNA editing quantitative trait loci (edQTL) mapping approach, we identify 3117 unique RNA editing events associated with a cis genetic polymorphism. Fourteen percent of these edQTL events are also associated with genetic variation in their gene expression. A subset of these events are associated with genome-wide association study signals of complex traits or diseases. We determine that tissue-specific levels of ADAR and ADARB1 are able to explain a subset of tissue-specific edQTL events. We find that certain microRNAs are able to differentiate between the edited and unedited isoforms of their targets. Furthermore, microRNAs can generate an expression quantitative trait loci (eQTL) signal from an edQTL locus by microRNA-mediated transcript degradation in an editing-specific manner. By integrative analyses of edQTL, eQTL, and microRNA expression profiles, we computationally discover and experimentally validate edQTL-microRNA pairs for which the microRNA may generate an eQTL signal from an edQTL locus in a tissue-specific manner. Conclusions Our work suggests a mechanism in which RNA editing variability can influence the phenotypes of complex traits and diseases by altering the stability and steady-state level of critical RNA molecules.


Author(s):  
Emilien Peltier ◽  
Sabrina Bibi-Triki ◽  
Fabien Dutreux ◽  
Claudia Caradec ◽  
Anne Friedrich ◽  
...  

Abstract Dissecting the genetic basis of complex trait remains a real challenge. The budding yeast Saccharomyces cerevisiae has become a model organism for studying quantitative traits, successfully increasing our knowledge in many aspects. However, the exploration of the genotype-phenotype relationship in non-model yeast species could provide a deeper insight into the genetic basis of complex traits. Here, we have studied this relationship in the Lachancea waltii species which diverged from the S. cerevisiae lineage prior to the whole-genome duplication. By performing linkage mapping analyses in this species, we identified 86 quantitative trait loci (QTL) impacting the growth in a large number of conditions. The distribution of these loci across the genome has revealed two major QTL hotspots. A first hotspot corresponds to a general growth QTL, impacting a wide range of conditions. By contrast, the second hotspot highlighted a trade-off with a disadvantageous allele for drug-free conditions which proved to be advantageous in the presence of several drugs. Finally, a comparison of the detected QTL in L. waltii with those which had been previously identified for the same trait in a closely related species, Lachancea kluyveri was performed. This analysis clearly showed the absence of shared QTL across these species. Altogether, our results represent a first step toward the exploration of the genetic architecture of quantitative trait across different yeast species.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1307-1315
Author(s):  
Daibin Zhong ◽  
Aditi Pai ◽  
Guiyun Yan

Abstract Parasites have profound effects on host ecology and evolution, and the effects of parasites on host ecology are often influenced by the magnitude of host susceptibility to parasites. Many parasites have complex life cycles that require intermediate hosts for their transmission, but little is known about the genetic basis of the intermediate host's susceptibility to these parasites. This study examined the genetic basis of susceptibility to a tapeworm (Hymenolepis diminuta) in the red flour beetle (Tribolium castaneum) that serves as an intermediate host in its transmission. Quantitative trait loci (QTL) mapping experiments were conducted with two independent segregating populations using amplified fragment length polymorphism (AFLP) markers and randomly amplified polymorphic DNA (RAPD) markers. A total of five QTL that significantly affected beetle susceptibility were identified in the two reciprocal crosses. Two common QTL on linkage groups 3 and 6 were identified in both crosses with similar effects on the phenotype, and three QTL were unique to each cross. In one cross, the three main QTL accounted for 29% of the total phenotypic variance and digenic epistasis explained 39% of the variance. In the second cross, the four main QTL explained 62% of the variance and digenic epistasis accounted for only 5% of the variance. The actions of these QTL were either overdominance or underdominance. Our results suggest that the polygenic nature of beetle susceptibility to the parasites and epistasis are important genetic mechanisms for the maintenance of variation within or among beetle strains in susceptibility to tapeworm infection.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1489-1506
Author(s):  
Kathleen D Jermstad ◽  
Daniel L Bassoni ◽  
Keith S Jech ◽  
Gary A Ritchie ◽  
Nicholas C Wheeler ◽  
...  

Abstract Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring temperatures. A three-generation mapping population of 460 cloned progeny was used for genetic mapping and phenotypic evaluations. An all-marker interval mapping method was used for scanning the genome for the presence of QTL and single-factor ANOVA was used for estimating QTL-by-environment interactions. A modest number of QTL were detected per trait, with individual QTL explaining up to 9.5% of the phenotypic variation. Two QTL-by-treatment interactions were found for growth initiation, whereas several QTL-by-treatment interactions were detected among growth cessation traits. This is the first report of QTL interactions with specific environmental signals in forest trees and will assist in the identification of candidate genes controlling these important adaptive traits in perennial plants.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 867-883 ◽  
Author(s):  
Nengjun Yi ◽  
Shizhong Xu ◽  
David B Allison

AbstractMost complex traits of animals, plants, and humans are influenced by multiple genetic and environmental factors. Interactions among multiple genes play fundamental roles in the genetic control and evolution of complex traits. Statistical modeling of interaction effects in quantitative trait loci (QTL) analysis must accommodate a very large number of potential genetic effects, which presents a major challenge to determining the genetic model with respect to the number of QTL, their positions, and their genetic effects. In this study, we use the methodology of Bayesian model and variable selection to develop strategies for identifying multiple QTL with complex epistatic patterns in experimental designs with two segregating genotypes. Specifically, we develop a reversible jump Markov chain Monte Carlo algorithm to determine the number of QTL and to select main and epistatic effects. With the proposed method, we can jointly infer the genetic model of a complex trait and the associated genetic parameters, including the number, positions, and main and epistatic effects of the identified QTL. Our method can map a large number of QTL with any combination of main and epistatic effects. Utility and flexibility of the method are demonstrated using both simulated data and a real data set. Sensitivity of posterior inference to prior specifications of the number and genetic effects of QTL is investigated.


2011 ◽  
Vol 93 (5) ◽  
pp. 333-342 ◽  
Author(s):  
XIA SHEN ◽  
LARS RÖNNEGÅRD ◽  
ÖRJAN CARLBORG

SummaryDealing with genotype uncertainty is an ongoing issue in genetic analyses of complex traits. Here we consider genotype uncertainty in quantitative trait loci (QTL) analyses for large crosses in variance component models, where the genetic information is included in identity-by-descent (IBD) matrices. An IBD matrix is one realization from a distribution of potential IBD matrices given available marker information. In QTL analyses, its expectation is normally used resulting in potentially reduced accuracy and loss of power. Previously, IBD distributions have been included in models for small human full-sib families. We develop an Expectation–Maximization (EM) algorithm for estimating a full model based on Monte Carlo imputation for applications in large animal pedigrees. Our simulations show that the bias of variance component estimates using traditional expected IBD matrix can be adjusted by accounting for the distribution and that the calculations are computationally feasible for large pedigrees.


2012 ◽  
Vol 279 (1747) ◽  
pp. 4551-4558 ◽  
Author(s):  
William E. Bradshaw ◽  
Kevin J. Emerson ◽  
Julian M. Catchen ◽  
William A. Cresko ◽  
Christina M. Holzapfel

Identifying regions of the genome contributing to phenotypic evolution often involves genetic mapping of quantitative traits. The focus then turns to identifying regions of ‘major’ effect, overlooking the observation that traits of ecological or evolutionary relevance usually involve many genes whose individual effects are small but whose cumulative effect is large. Herein, we use the power of fully interfertile natural populations of a single species of mosquito to develop three quantitative trait loci (QTL) maps: one between two post-glacially diverged populations and two between a more ancient and a post-glacial population. All demonstrate that photoperiodic response is genetically a highly complex trait. Furthermore, we show that marker regressions identify apparently ‘non-significant’ regions of the genome not identified by composite interval mapping, that the perception of the genetic basis of adaptive evolution is crucially dependent upon genetic background and that the genetic basis for adaptive evolution of photoperiodic response is highly variable within contemporary populations as well as between anciently diverged populations.


2015 ◽  
Author(s):  
Christine Peterson ◽  
Susan Service ◽  
Anna Jasinska ◽  
Fuying Gao ◽  
Ivette Zelaya ◽  
...  

The observation that variants regulating gene expression (expression quantitative trait loci, eQTL) are at a high frequency among SNPs associated with complex traits has made the genome-wide characterization of gene expression an important tool in genetic mapping studies of such traits. As part of a study to identify genetic loci contributing to bipolar disorder and a wide range of BP-related quantitative traits in members of 26 pedigrees from Costa Rica and Colombia, we measured gene expression in lymphoblastoid cell lines derived from 786 pedigree members. The study design enabled us to comprehensively reconstruct the genetic regulatory network in these families, provide estimates of heritability, identify eQTL, evaluate missing heritability for the eQTL, and quantify the number of different alleles contributing to any given locus.


2017 ◽  
Author(s):  
Fanny Bonnafous ◽  
Ghislain Fievet ◽  
Nicolas Blanchet ◽  
Marie-Claude Boniface ◽  
Sébastien Carrère ◽  
...  

AbstractGenome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.


Sign in / Sign up

Export Citation Format

Share Document