scholarly journals Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products

2016 ◽  
Author(s):  
C.J. Carter ◽  
R.A. Blizard

AbstractThe increasing incidence of autism suggests a major environmental influence. Epidemiology has implicated many candidates and genetics many susceptibility genes. Gene/environment interactions in autism were analysed using 206 autism genes (ASG’s) to interrogate ~1 million chemical/gene interactions in the comparative toxicogenomics database. Bias towards ASG’s was statistically determined for each chemical. Many suspect compounds identified in epidemiology, including tetrachlorodibenzodioxin, pesticides, particulate matter, benzo(a)pyrene, heavy metals, valproate, acetaminophen, SSRI’s, cocaine, bisphenol A, phthalates, polyhalogenated biphenyls, flame retardants, diesel constituents, terbutaline and oxytocin, inter alia showed a significant degree of bias towards ASG’s, as did relevant endogenous agents (retinoids, sex steroids, thyroxine, melatonin, folate, dopamine, serotonin). Numerous other endocrine disruptors selectively targeted ASG’s including paraquat, atrazine and other pesticides not yet studied in autism and many compounds used in food, cosmetics or household products, including tretinoin, soy phytoestrogens, aspartame, titanium dioxide and sodium fluoride. Autism polymorphisms are known to influence sensitivity to some of these chemicals and these same genes play an important role in barrier function and control of respiratory cilia sweeping particulate matter from the airways. The close gene/environment relationships, for multiple suspect pollutants, suggest that the rising incidence of autism might be chemically driven by numerous environmental contaminants in a gene dependent manner. The protective dappled camouflage of the peppered moth was rendered invalid by industrial soot covering the trees, a situation reversed by clean air acts. The rising tide of neurodevelopmental and other childhood disorders linked to multiple pollutants may need a similar solution.

2021 ◽  
Vol 11 (4) ◽  
pp. 1856
Author(s):  
Masato Honda ◽  
Xuchun Qiu ◽  
Suzanne Lydia Undap ◽  
Takeshi Kimura ◽  
Tsuguhide Hori ◽  
...  

We investigated the pollution levels of 6 heavy metals and 29 dioxins (polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs)) in intertidal and supratidal zones by using wharf roaches (Ligia spp.) collected from 12 sampling sites on the coast of Northeast Japan from November 2011 to June 2012. The total concentrations of heavy metals ranged from 177 to 377 µg/g-dry weight (dw), and the predominant metals were copper, zinc, and aluminum. The order of the detected level of heavy metals was zinc > aluminum > copper > cadmium > lead > chromium, and this trend was similar to a previous report. The total toxic equivalent (TEQ) value of the PCDD/Fs ranged from less than the limit of detection (<LOD) to 2.33 pg-TEQ/g-dw, and the predominant congener was octachlorodibenzodioxin (<LOD to 110 pg/g-dw). Compared with PCDD/Fs, DL-PCBs were detected at a predominantly higher level (total TEQ value: 0.64–27.79 pg-TEQ/g-dw). Detected levels of dioxins, especially DL-PCBs in the wharf roach, were like those in the bivalves. These results indicate that the wharf roach could reflect heavy metals and dioxin pollution in the supratidal zones and is a suitable environmental indicator for these environmental pollutants. This is the first study to investigate heavy metals, PCDD/Fs, and DL-PCBs pollution in coastal isopods in Japan.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diksha Sirohi ◽  
Ruqaiya Al Ramadhani ◽  
Luke D. Knibbs

AbstractPurposeEndocrine-related diseases and disorders are on the rise globally. Synthetically produced environmental chemicals (endocrine-disrupting chemicals (EDCs)) mimic hormones like oestrogen and alter signalling pathways. Endometriosis is an oestrogen-dependent condition, affecting 10–15% of women of the reproductive age, and has substantial impacts on the quality of life. The aetiology of endometriosis is believed to be multifactorial, ranging from genetic causes to immunologic dysfunction due to environmental exposure to EDCs. Hence, we undertook a systematic review and investigated the epidemiological evidence for an association between EDCs and the development of endometriosis. We also aimed to assess studies on the relationship between body concentration of EDCs and the severity of endometriosis.MethodFollowing PRISMA guidelines, a structured search of PubMed, Embase and Scopus was conducted (to July 2018). The included studies analysed the association between one or more EDCs and the prevalence of endometriosis. The types of EDCs, association and outcome, participant characteristics and confounding variables were extracted and analysed. Quality assessment was performed using standard criteria.ResultsIn total, 29 studies were included. Phthalate esters were positively associated with the prevalence of endometriosis. The majority (71%) of studies revealed a significant association between bisphenol A, organochlorinated environmental pollutants (dioxins, dioxin-like compounds, organochlorinated pesticides, polychlorinated biphenyls) and the prevalence of endometriosis. A positive association between copper, chromium and prevalence of endometriosis was demonstrated in one study only. Cadmium, lead and mercury were not associated with the prevalence of endometriosis. There were conflicting results for the association between nickel and endometriosis. The relationship of EDCs and severity of endometriosis was not established in the studies.ConclusionWe found some evidence to suggest an association between phthalate esters, bisphenol A, organochlorinated environmental pollutants and the prevalence of endometriosis. Disentangling these exposures from various other factors that affect endometriosis is complex, but an important topic for further research.


2021 ◽  
pp. 111013
Author(s):  
Dong-Wook Lee ◽  
Jongmin Oh ◽  
Shinhee Ye ◽  
Youngrin Kwag ◽  
Wonho Yang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryota Ko ◽  
Masahiko Hayashi ◽  
Miho Tanaka ◽  
Tomoaki Okuda ◽  
Chiharu Nishita-Hara ◽  
...  

AbstractWe evaluated the effects of ambient particulate matter (PM) on the corneal epithelium using a reconstructed human corneal epithelium (HCE) model. We collected two PM size fractions [aerodynamic diameter smaller than 2.4 µm: PM0.3–2.4 and larger than 2.4 µm: PM>2.4] and exposed these tissues to PM concentrations of 1, 10, and 100 µg/mL for 24 h. After exposure, cell viability and interleukin (IL) IL-6 and IL-8 levels were determined, and haematoxylin and eosin and immunofluorescence staining of the zonula occludens-1 (ZO-1) were performed on tissue sections. In addition, the effects of a certified reference material of urban aerosols (UA; 100 µg/mL) were also examined as a reference. The viability of cells exposed to 100 μg/mL UA and PM>2.4 decreased to 76.2% ± 7.4 and 75.4% ± 16.1, respectively, whereas PM0.3–2.4 exposure had a limited effect on cell viability. These particles did not increase IL-6 and IL-8 levels significantly even though cell viability was decreased in 100 μg/mL UA and PM>2.4. ZO-1 expression was reduced in a dose-dependent manner in all groups. Reconstructed HCE could be used as an in vitro model to study the effects of environmental PM exposure on ocular surface cell viability and inflammation.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1312
Author(s):  
Daniel Wicke ◽  
Andreas Matzinger ◽  
Hauke Sonnenberg ◽  
Nicolas Caradot ◽  
Rabea-Luisa Schubert ◽  
...  

The main aim of this study was a survey of micropollutants in stormwater runoff of Berlin (Germany) and its dependence on land-use types. In a one-year monitoring program, event mean concentrations were measured for a set of 106 parameters, including 85 organic micropollutants (e.g., flame retardants, phthalates, pesticides/biocides, polycyclic aromatic hydrocarbons (PAH)), heavy metals and standard parameters. Monitoring points were selected in five catchments of different urban land-use types, and at one urban river. We detected 77 of the 106 parameters at least once in stormwater runoff of the investigated catchment types. On average, stormwater runoff contained a mix of 24 µg L−1 organic micropollutants and 1.3 mg L−1 heavy metals. For organic micropollutants, concentrations were highest in all catchments for the plasticizer diisodecyl phthalate. Concentrations of all but five parameters showed significant differences among the five land-use types. While major roads were the dominant source of traffic-related substances such as PAH, each of the other land-use types showed the highest concentrations for some substances (e.g., flame retardants in commercial area, pesticides in catchment dominated by one family homes). Comparison with environmental quality standards (EQS) for surface waters shows that 13 micropollutants in stormwater runoff and 8 micropollutants in the receiving river exceeded German quality standards for receiving surface waters during storm events, highlighting the relevance of stormwater inputs for urban surface waters.


Sign in / Sign up

Export Citation Format

Share Document