scholarly journals Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient

2017 ◽  
Author(s):  
Rhiannon Mondav ◽  
Carmody K McCalley ◽  
Suzanne B Hodgkins ◽  
Steve Frolking ◽  
Scott R Saleska ◽  
...  

SummaryBiogenic production and release of methane (CH4) from thawing permafrost has the potential to be a strong source of radiative forcing. We investigated changes in the active layer microbial community of three sites representative of distinct permafrost thaw stages at a palsa mire in northern Sweden. The palsa sites with intact permafrost, and low radiative forcing signature had a phylogenetically clustered community dominated byAcidobacteriaandProteobacteria.The bog with thawing permafrost and low radiative forcing signature was dominated by hydrogenotrophic methanogens andAcidobacteria, had lower alpha diversity, and midrange phylogenetic clustering, characteristic of ecosystem disturbance affecting habitat filtering, shifting from palsa-like to fen-like at the waterline. The fen had no underlying permafrost, and the highest alpha, beta and phylogenetic diversity, was dominated byProteobacteriaandEuryarchaeota,and was significantly enriched in methanogens. The mire microbial network was modular with module cores consisting of clusters ofAcidobacteria, Euryarchaeota,orXanthomonodales.Loss of underlying permafrost with associated hydrological shifts correlated to changes in microbial composition, alpha, beta, and phylogenetic diversity associated with a higher radiative forcing signature. These results support the complex role of microbial interactions in mediating carbon budget changes and climate feedback in response to climate forcing.

2020 ◽  
Author(s):  
Haiyan Li ◽  
Mari Mäki ◽  
Lukas Kohl ◽  
Minna Väliranta ◽  
Jaana Bäck ◽  
...  

<p>Permafrost thaw, as a consequence of climate warming, liberates large quantities of frozen organic carbon in the Arctic regions. The response of gaseous carbon release upon permafrost thaw might play a crucial role in the future evolution of atmosphere-land fluxes of biogenic gases such as volatile organic compounds (VOCs), a group of reactive gases and the dominant modulator of tropospheric oxidation capacities. Here, we examine the response of volatile release from Finnish Lapland permafrost soils to temperature increase in a series of laboratory incubation experiments. The experiments show that when the temperature rises from 0 °C to 15 °C, various VOC species are significantly emitted from the gradually thawing soils. The VOC fluxes from thawing permafrost are on average four times as high as those from active layer. Acetic acid and acetone dominate the total volatile emissions from both permafrost and active layer, with significant amounts of aromatics and terpenes detected as well. The emission rate and the composition of volatile release from thawing soils are highly responsive to temperature variations. As temperature increases, more less volatile compounds are released, i.e., sesquiterpenes and diterpenes. Collectively, these results demonstrate the highly overlooked volatile production from thawing permafrost, which will create a stronger permafrost carbon-climate feedback.</p>


2017 ◽  
Vol 19 (8) ◽  
pp. 3201-3218 ◽  
Author(s):  
Rhiannon Mondav ◽  
Carmody K. McCalley ◽  
Suzanne B. Hodgkins ◽  
Steve Frolking ◽  
Scott R. Saleska ◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 647-663 ◽  
Author(s):  
Kuang-Yu Chang ◽  
William J. Riley ◽  
Patrick M. Crill ◽  
Robert F. Grant ◽  
Virginia I. Rich ◽  
...  

Abstract. Permafrost peatlands store large amounts of carbon potentially vulnerable to decomposition. However, the fate of that carbon in a changing climate remains uncertain in models due to complex interactions among hydrological, biogeochemical, microbial, and plant processes. In this study, we estimated effects of climate forcing biases present in global climate reanalysis products on carbon cycle predictions at a thawing permafrost peatland in subarctic Sweden. The analysis was conducted with a comprehensive biogeochemical model (ecosys) across a permafrost thaw gradient encompassing intact permafrost palsa with an ice core and a shallow active layer, partly thawed bog with a deeper active layer and a variable water table, and fen with a water table close to the surface, each with distinct vegetation and microbiota. Using in situ observations to correct local cold and wet biases found in the Global Soil Wetness Project Phase 3 (GSWP3) climate reanalysis forcing, we demonstrate good model performance by comparing predicted and observed carbon dioxide (CO2) and methane (CH4) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate suggest that the three peatland types currently accumulate carbon from the atmosphere, although the bog and fen sites can have annual positive radiative forcing impacts due to their higher CH4 emissions. Our simulations indicate that projected precipitation increases could accelerate CH4 emissions from the palsa area, even without further degradation of palsa permafrost. The GSWP3 cold and wet biases for this site significantly alter simulation results and lead to erroneous active layer depth (ALD) and carbon budget estimates. Biases in simulated CO2 and CH4 exchanges from biased climate forcing are as large as those among the thaw stages themselves at a landscape scale across the examined permafrost thaw gradient. Future studies should thus not only focus on changes in carbon budget associated with morphological changes in thawing permafrost, but also recognize the effects of climate forcing uncertainty on carbon cycling.


2018 ◽  
Author(s):  
Kuang-Yu Chang ◽  
William J. Riley ◽  
Patrick Crill ◽  
Robert F. Grant ◽  
Virginia Rich ◽  
...  

Abstract. Permafrost peatlands store large amounts of carbon potentially vulnerable to decomposition. However, the fate of that carbon in a changing climate remains uncertain in models due to complex interactions among hydrological, biogeochemical, microbial, and plant processes. In this study, we estimated effects of climate forcing biases present in global climate reanalysis products on carbon cycle predictions at a thawing permafrost peatland in subarctic Sweden. The analysis was conducted with a comprehensive biogeochemical model (ecosys) across a permafrost thaw gradient encompassing intact palsa with an ice core and a shallow active layer, partly thawed bog with a deeper active layer and a variable water table, and fully thawed fen with a water table close to the surface, each with distinct vegetation and microbiota. Using in situ observations to correct local cold and wet biases found in the Global Soil Wetness Project Phase 3 (GSWP3) climate reanalysis forcing, we evaluated our model performance by comparing predicted and observed carbon dioxide (CO2) and methane (CH4) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate suggest that the three peatland types currently accumulate carbon from the atmosphere, although the bog and fen sites can have annual positive radiative forcing impacts due to their higher CH4 emissions. Our simulations indicate that projected precipitation increases could accelerate CH4 emissions from the palsa area, even without further degradation of palsa permafrost. The GSWP3 cold and wet biases for this site significantly alter simulation results and lead to erroneous active layer depth and carbon budget estimates. Biases in simulated CO2 and CH4 exchanges from biased climate forcing are as large as those among the thaw stages themselves at a landscape scale across the examined permafrost thaw gradient. Future studies should thus not only focus on changes in carbon budget associated with morphological changes in thawing permafrost, but also recognize the effects of climate forcing uncertainty on carbon cycling.


2021 ◽  
Author(s):  
Negar Vakilifard ◽  
Katherine Turner ◽  
Ric Williams ◽  
Philip Holden ◽  
Neil Edwards ◽  
...  

<p>The controls of the effective transient climate response (TCRE), defined in terms of the dependence of surface warming since the pre-industrial to the cumulative carbon emission, is explained in terms of climate model experiments for a scenario including positive emissions and then negative emission over a period of 400 years. We employ a pre-calibrated ensemble of GENIE, grid-enabled integrated Earth system model, consisting of 86 members to determine the process of controlling TCRE in both CO<sub>2</sub> emissions and drawdown phases. Our results are based on the GENIE simulations with historical forcing from AD 850 including land use change, and the future forcing defined by CO<sub>2</sub> emissions and a non-CO<sub>2</sub> radiative forcing timeseries. We present the results for the point-source carbon capture and storage (CCS) scenario as a negative emission scenario, following the medium representative concentration pathway (RCP4.5), assuming that the rate of emission drawdown is 2 PgC/yr CO<sub>2</sub> for the duration of 100 years. The climate response differs between the periods of positive and negative carbon emissions with a greater ensemble spread during the negative carbon emissions. The controls of the spread in ensemble responses are explained in terms of a combination of thermal processes (involving ocean heat uptake and physical climate feedback), radiative processes (saturation in radiative forcing from CO<sub>2</sub> and non-CO<sub>2</sub> contributions) and carbon dependences (involving terrestrial and ocean carbon uptake).  </p>


2021 ◽  
Author(s):  
Ning Ling ◽  
Tingting Wang ◽  
Yakov Kuzyakov

Abstract Microbial composition and functioning in the rhizosphere are among the most fascinating but hidden topics in microbial ecology. We generalized bacterial traits regarding community diversity, composition and functions using published 16s rDNA amplicon sequences of 584 pairs of bulk soils vs rhizosphere of crops. The lower bacterial diversity in the rhizosphere (-7% richness) compared to root-free soil reflects the excess of available organic substances near the root. The rhizosphere is enriched by Bacteroidetes, Proteobacteria and Cyanobacteria as well as other copiotrophic bacteria (r strategists). Complex but unstable bacterial networks in rhizosphere reflect tight microbial interactions and adaptations to fluctuating conditions common for r strategists. The dominant dormancy strategy in the rhizosphere is the toxin-antitoxin system, while sporulation is common in bulk soil. Function prediction analysis showed that the rhizosphere is strongly enriched (50–115%) in methanol oxidation, ureolysis, cellulolysis, chitinolysis and nitrogen fixation, but strongly depleted in functions related to N-cycling.


2020 ◽  
Author(s):  
Tracie J. Haan ◽  
Devin M. Drown

ABSTRACTUnderstanding the distribution and mobility of antibiotic resistance genes (ARGs) in soil bacteria from diverse ecological niches is critical in assessing their impacts on the global spread of antibiotic resistance. In permafrost associated soils, climate and human driven forces augment near-surface thaw altering the overlying active layer. Physiochemical changes shift bacterial community composition and metabolic functioning, however, it is unknown if permafrost thaw will affect ARGs comprising the boreal soil resistome. To assess how thaw shifts the resistome, we performed susceptibility testing and whole genome sequencing on soil isolates from a disturbance-induced thaw gradient in Interior Alaska. We found resistance was widespread in the Alaskan isolates, with 87% of the 90 isolates resistant to at least one of the five antibiotics. We also observed positive trends in both the proportion of resistant isolates and the abundance of ARGs with permafrost thaw. However, the number of ARGs per genome and types of genes present were shown to cluster more strongly by bacterial taxa rather than thaw emphasizing the evolutionary origins of resistance and the role vertical gene transfer has in shaping the predominantly chromosomally encoded ARGs. The observed higher proportion of plasmid-borne and distinct ARGs in our isolates compared to RefSoil+ suggests local conditions affect the composition of the resistome along with selection for ARG mobility. Overall taxonomy and geography shape the resistome, suggesting that as microbial communities shift in response to permafrost thaw so will the ARGs in the boreal active layer.IMPORTANCEAs antibiotic resistance continues to emerge and rapidly spread in clinical settings, it is imperative to generate studies that build insight into the ecology of environmental resistance genes that pose a threat to human health. This study provides insight into the occurrence of diverse ARGs found in Alaskan soil bacteria which is suggestive of the potential to compromise health. The observed differences in ARG abundance with increasing permafrost thaw suggest the role of soil disturbance in driving the distribution of resistant determinants and the predominant taxa that shape the resistome. Moreover, the high-quality whole genome assemblies generated in this study are an extensive resource for microbial researchers interested in permafrost thaw and will provide a steppingstone for future research into ARG mobility and transmission risks.


2019 ◽  
Vol 12 (7) ◽  
pp. 2727-2765 ◽  
Author(s):  
Hiroaki Tatebe ◽  
Tomoo Ogura ◽  
Tomoko Nitta ◽  
Yoshiki Komuro ◽  
Koji Ogochi ◽  
...  

Abstract. The sixth version of the Model for Interdisciplinary Research on Climate (MIROC), called MIROC6, was cooperatively developed by a Japanese modeling community. In the present paper, simulated mean climate, internal climate variability, and climate sensitivity in MIROC6 are evaluated and briefly summarized in comparison with the previous version of our climate model (MIROC5) and observations. The results show that the overall reproducibility of mean climate and internal climate variability in MIROC6 is better than that in MIROC5. The tropical climate systems (e.g., summertime precipitation in the western Pacific and the eastward-propagating Madden–Julian oscillation) and the midlatitude atmospheric circulation (e.g., the westerlies, the polar night jet, and troposphere–stratosphere interactions) are significantly improved in MIROC6. These improvements can be attributed to the newly implemented parameterization for shallow convective processes and to the inclusion of the stratosphere. While there are significant differences in climates and variabilities between the two models, the effective climate sensitivity of 2.6 K remains the same because the differences in radiative forcing and climate feedback tend to offset each other. With an aim towards contributing to the sixth phase of the Coupled Model Intercomparison Project, designated simulations tackling a wide range of climate science issues, as well as seasonal to decadal climate predictions and future climate projections, are currently ongoing using MIROC6.


2012 ◽  
Vol 69 (7) ◽  
pp. 2256-2271 ◽  
Author(s):  
Ming Cai ◽  
Ka-Kit Tung

Abstract Despite the differences in the spatial patterns of the external forcing associated with a doubling CO2 and with a 2% solar variability, the final responses in the troposphere and at the surface in a three-dimensional general circulation model appear remarkably similar. Various feedback processes are diagnosed and compared using the climate feedback–response analysis method (CFRAM) to understand the mechanisms responsible. At the surface, solar radiative forcing is stronger in the tropics than at the high latitudes, whereas greenhouse radiative forcing is stronger at high latitudes compared with the tropics. Also solar forcing is positive everywhere in the troposphere and greenhouse radiative forcing is positive mainly in the lower troposphere. The water vapor feedback strengthens the upward-decreasing radiative heating profile in the tropics and the poleward-decreasing radiative heating profile in the lower troposphere. The “evaporative” and convective feedbacks play an important role only in the tropics where they act to reduce the warming at the surface and lower troposphere in favor of upper-troposphere warming. Both water vapor feedback and enhancement of convection in the tropics further strengthen the initial poleward-decreasing profile of energy flux convergence perturbations throughout the troposphere. As a result, the large-scale dynamical poleward energy transport, which acts on the negative temperature gradient, is enhanced in both cases, contributing to a polar amplification of warming aloft and a warming reduction in the tropics. The dynamical amplification of polar atmospheric warming also contributes additional warming to the surface below via downward thermal radiation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Cameron Wagg ◽  
Klaus Schlaeppi ◽  
Samiran Banerjee ◽  
Eiko E. Kuramae ◽  
Marcel G. A. van der Heijden

Abstract The soil microbiome is highly diverse and comprises up to one quarter of Earth’s diversity. Yet, how such a diverse and functionally complex microbiome influences ecosystem functioning remains unclear. Here we manipulated the soil microbiome in experimental grassland ecosystems and observed that microbiome diversity and microbial network complexity positively influenced multiple ecosystem functions related to nutrient cycling (e.g. multifunctionality). Grassland microcosms with poorly developed microbial networks and reduced microbial richness had the lowest multifunctionality due to fewer taxa present that support the same function (redundancy) and lower diversity of taxa that support different functions (reduced  functional uniqueness). Moreover, different microbial taxa explained different ecosystem functions pointing to the significance of functional diversity in microbial communities. These findings indicate the importance of microbial interactions within and among fungal and bacterial communities for enhancing ecosystem performance and demonstrate that the extinction of complex ecological associations belowground can impair ecosystem functioning.


Sign in / Sign up

Export Citation Format

Share Document