scholarly journals Range size dynamics can explain why evolutionarily age and diversification rate correlate with contemporary extinction risk in plants

2017 ◽  
Author(s):  
Andrew J. Tanentzap ◽  
Javier Igea ◽  
Matthew G. Johnston ◽  
Matthew J. Larcombe

AbstractExtinction threatens many species, yet few factors predict this risk across the plant Tree of Life (ToL). Taxon age is one factor that may associate with extinction if occupancy of geographic and adaptive zones varies with time, but evidence for such an association has been equivocal. Age-dependent occupancy can also influence diversification rates and thus extinction risk where new taxa have small range and population sizes. Here we analysed 509 well-sampled genera from across the plant ToL. We found that a greater proportion of species were threatened by extinction in younger and faster-diversifying genera. Repeating our analyses in two large, well-sampled groups, we found that extinction risk increased with evolutionary age in conifer species but not palms. Potential range size decreased in older, non-threatened conifers more strongly than in threatened taxa, suggesting that range size dynamics may explain differing patterns of extinction risk across the ToL with consequences for biodiversity conservation.

2021 ◽  
Author(s):  
Yuxi Zhong ◽  
Chuanwu Chen ◽  
Yanping Wang

Abstract China is a country with one of the most species rich reptile faunas in the world. However, nearly a quarter of Chinese lizard species assessed by the China Biodiversity Red List are threatened. Nevertheless, to date, no study has explicitly examined the pattern and processes of extinction and threat in Chinese lizards. In this study, we conducted the first comparative phylogenetic analysis of extinction risk in Chinese lizards. We addressed the following three questions: 1) What is the pattern of extinction and threat in Chinese lizards? 2) Which species traits and extrinsic factors are related to their extinction risk? 3) How can we protect Chinese lizards based on our results? We collected data on ten species traits (body size, clutch size, geographic range size, activity time, reproductive mode, habitat specialization, habitat use, leg development, maximum elevation, and elevation range) and seven extrinsic factors (mean annual precipitation, mean annual temperature, mean annual solar insolation, normalized difference vegetation index (NDVI), human footprint, human population density, and human exploitation). After phylogenetic correction, these variables were used separately and in combination to assess their associations with extinction risk. We found that Chinese lizards with small geographic range, large body size, high habitat specialization, and living in high precipitation areas were vulnerable to extinction. Conservation priority should thus be given to species with the above extinction-prone traits so as to effectively protect Chinese lizards. Preventing future habitat destruction should also be a primary focus of management efforts because species with small range size and high habitat specialization are particularly vulnerable to habitat loss.


2014 ◽  
Vol 281 (1793) ◽  
pp. 20141574 ◽  
Author(s):  
Tatsuya Amano ◽  
Brody Sandel ◽  
Heidi Eager ◽  
Edouard Bulteau ◽  
Jens-Christian Svenning ◽  
...  

Many of the world's languages face serious risk of extinction. Efforts to prevent this cultural loss are severely constrained by a poor understanding of the geographical patterns and drivers of extinction risk. We quantify the global distribution of language extinction risk—represented by small range and speaker population sizes and rapid declines in the number of speakers—and identify the underlying environmental and socioeconomic drivers. We show that both small range and speaker population sizes are associated with rapid declines in speaker numbers, causing 25% of existing languages to be threatened based on criteria used for species. Language range and population sizes are small in tropical and arctic regions, particularly in areas with high rainfall, high topographic heterogeneity and/or rapidly growing human populations. By contrast, recent speaker declines have mainly occurred at high latitudes and are strongly linked to high economic growth. Threatened languages are numerous in the tropics, the Himalayas and northwestern North America. These results indicate that small-population languages remaining in economically developed regions are seriously threatened by continued speaker declines. However, risks of future language losses are especially high in the tropics and in the Himalayas, as these regions harbour many small-population languages and are undergoing rapid economic growth.


Oryx ◽  
2006 ◽  
Vol 40 (3) ◽  
pp. 266-278 ◽  
Author(s):  
Stuart H.M. Butchart ◽  
Alison J. Stattersfield ◽  
Nigel J. Collar

Considerable resources and efforts have been directed at biodiversity conservation in recent years, but measures of the success of conservation programmes have been limited. Based on information on population sizes, trends, threatening processes and the nature and intensity of conservation actions implemented during 1994–2004, we assessed that 16 bird species would have probably become extinct during this period if conservation programmes for them had not been undertaken. The mean minimum population size of these 16 species increased from 34 to 147 breeding individuals during 1994–2004. In 1994, 63% of them had declining populations but by 2004, 81% were increasing. Most of these species (63%) are found on islands. The principal threats that led to their decline were habitat loss and degradation (88%), invasive species (50%) and exploitation (38%), a pattern similar to that for other threatened species, but with exploitation and invasive species being relatively more important. The principal actions carried out were habitat protection and management (75% of species), control of invasive species (50%), and captive breeding and release (33%). The 16 species represent only 8.9% of those currently classified as Critically Endangered, and 1.3% of those threatened with extinction. Many of these additional species slipped closer to extinction during 1994–2004, including 164 that deteriorated in status sufficiently to be uplisted to higher categories of extinction risk on the IUCN Red List (IUCN, 2006). Efforts need to be considerably scaled up to prevent many more extinctions in the coming decades. The knowledge and tools to achieve this are available, but we need to mobilize the resources and political will to apply them.


Paleobiology ◽  
2020 ◽  
pp. 1-14
Author(s):  
Michelle M. Casey ◽  
Erin E. Saupe ◽  
Bruce S. Lieberman

Abstract Geographic range size and abundance are important determinants of extinction risk in fossil and extant taxa. However, the relationship between these variables and extinction risk has not been tested extensively during evolutionarily “quiescent” times of low extinction and speciation in the fossil record. Here we examine the influence of geographic range size and abundance on extinction risk during the late Paleozoic (Mississippian–Permian), a time of “sluggish” evolution when global rates of origination and extinction were roughly half those of other Paleozoic intervals. Analyses used spatiotemporal occurrences for 164 brachiopod species from the North American midcontinent. We found abundance to be a better predictor of extinction risk than measures of geographic range size. Moreover, species exhibited reductions in abundance before their extinction but did not display contractions in geographic range size. The weak relationship between geographic range size and extinction in this time and place may reflect the relative preponderance of larger-ranged taxa combined with the physiographic conditions of the region that allowed for easy habitat tracking that dampened both extinction and speciation. These conditions led to a prolonged period (19–25 Myr) during which standard macroevolutionary rules did not apply.


2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
François Brischoux ◽  
Harvey B. Lillywhite ◽  
Richard Shine ◽  
David Pinaud

Species that are distributed over wide geographical ranges are likely to encounter a greater diversity of environmental conditions than do narrowly distributed taxa, and thus we expect a correlation between size of geographical range and breadth of physiological tolerances to abiotic challenges. That correlation could arise either because higher physiological capacity enables range expansion, or because widely distributed taxa experience more intense (but spatially variable) selection on physiological tolerances. The invasion of oceanic habitats by amniotic vertebrates provides an ideal system with which to test the predicted correlation between range size and physiological tolerances, because all three lineages that have secondarily moved into marine habitats (mammals, birds, reptiles) exhibit morphological and physiological adaptations to excrete excess salt. Our analyses of data on 62 species (19 mammals, 18 birds, 24 reptiles) confirm that more-widely distributed taxa encounter habitats with a wider range of salinities, and that they have higher osmoregulatory ability as determined by sodium concentrations in fluids expelled from salt-excreting organs. This result remains highly significant even in models that incorporate additional explanatory variables such as metabolic mode, body size and dietary habits. Physiological data thus may help to predict potential range size and perhaps a species' vulnerability to anthropogenic disturbance.


Author(s):  
Rolla Tryon

SynopsisThe most common kinds of speciation result in new species that initially have a small range. These will develop a limited or an extensive range depending upon the geographic extent of the environment to which they are adapted. A significant element in the extent of the potential range of a new species is the adaptation inherited from the parental species. Selection of a parental species for a local environment at one site can lead to a narrow ecological adaptation and often to a limited potential range. These species are likely to produce derived ones that also have a limited range, and these derivates will increase the regional species endemism and diversity. Selection of a parental species for migration to other sites can lead to a broader ecological adaptation and often to a broad potential range. These species are more likely to produce derived ones that also have an extensive range, and these derivates will increase regional species diversity.


2018 ◽  
Vol 226 ◽  
pp. 168-176
Author(s):  
Xinghua Sui ◽  
Lingfeng Mao ◽  
Ying Liu ◽  
Fangliang He

2019 ◽  
Vol 77 (1) ◽  
pp. 12-29 ◽  
Author(s):  
Julia M Lawson ◽  
Riley A Pollom ◽  
Cat A Gordon ◽  
Joanna Barker ◽  
Eva K M Meyers ◽  
...  

Abstract Understanding the details of local and regional extinctions allows for more efficient allocation of conservation activities and resources. This involves identifying where populations persist, where populations may still be present, and where populations may be locally extinct. Three threatened angel sharks occur in the Eastern Atlantic and Mediterranean Sea: Sawback Angelshark (Squatina aculeata), Smoothback Angelshark (Squatina oculata), and Angelshark (Squatina squatina). Population sizes and geographic ranges of these species have been reduced due to overfishing and habitat loss, placing them among the world s most threatened chondrichthyans. We revise distribution maps, review global status, and present a Conservation Strategy to protect and restore these angel shark populations by minimizing fishing mortality, protecting critical habitat, and mitigating human disturbance. Updated distributions reveal that a halving of the geographic extent may have occurred for all three species, with potential declines of 51% for Sawback Angelshark, 48% for Smoothback Angelshark, and 58% for Angelshark. While 20 national and international management measures are now in place for Angelshark, only half of these include the other two species. We encourage further conservation action to adopt and develop this Conservation Strategy to restore angel shark populations to robust levels and safeguard them throughout their range.


2020 ◽  
Vol 12 (12) ◽  
pp. 2441-2449
Author(s):  
Jennifer James ◽  
Adam Eyre-Walker

Abstract What determines the level of genetic diversity of a species remains one of the enduring problems of population genetics. Because neutral diversity depends upon the product of the effective population size and mutation rate, there is an expectation that diversity should be correlated to measures of census population size. This correlation is often observed for nuclear but not for mitochondrial DNA. Here, we revisit the question of whether mitochondrial DNA sequence diversity is correlated to census population size by compiling the largest data set to date, using 639 mammalian species. In a multiple regression, we find that nucleotide diversity is significantly correlated to both range size and mass-specific metabolic rate, but not a variety of other factors. We also find that a measure of the effective population size, the ratio of nonsynonymous to synonymous diversity, is also significantly negatively correlated to both range size and mass-specific metabolic rate. These results together suggest that species with larger ranges have larger effective population sizes. The slope of the relationship between diversity and range is such that doubling the range increases diversity by 12–20%, providing one of the first quantifications of the relationship between diversity and the census population size.


Author(s):  
Morten Hertz ◽  
Iben Ravnborg Jensen ◽  
Laura Østergaard Jensen ◽  
Iben Vejrum Nielsen ◽  
Jacob Winde ◽  
...  

SummaryMany domestic breeds face challenges concerning genetic variability, because of their small population sizes along with a high risk of inbreeding. Therefore, it is important to obtain knowledge on their extinction risk, along with the possible benefits of certain breeding strategies. Since many domestic breeds face the same problems, results from such studies can be applied across breeds and species. Here a Population Viability Analysis (PVA) was implemented to simulate the future probability of extinction for a population of the endangered Danish Jutland cattle (Bos taurus), based on the software Vortex. A PVA evaluates the extinction risk of a population by including threats and demographic values. According to the results from the PVA the population will go extinct after 122 years with the current management. Four scenarios were created to investigate which changes in the breeding scheme would have the largest effect on the survival probabilities, including Scenario 1: More females in the breeding pool, scenario 2: More males in the breeding pool, scenario 3: Increased carrying capacity, and scenario 4: Supplementing males to the population through artificial insemination using semen from bulls used in the populations in past generations. All scenarios showed a positive effect on the population's probability of survival, and with a combination of the different scenarios, the population size seems to be stabilized.


Sign in / Sign up

Export Citation Format

Share Document