scholarly journals Histone deacetylase inhibition reduces deleterious cytokine release induced by ingenol stimulation

2017 ◽  
Author(s):  
Erin T. Larragoite ◽  
Laura J. Martins ◽  
Adam M. Spivak ◽  
Racheal A. Nell ◽  
Vicente Planelles

AbstractIntroductionThough antiretroviral therapy has led to viral suppression and increased quality of life for patients living with HIV-1, strategies to eliminate the HIV-1 latent reservoir are still necessary to eliminate HIV. Latency reversal with superior latency reversal agents (LRAs) such as protein kinase C (PKC) agonists is a promising strategy for unveiling and eliminating the latent HIV-1 reservoir. However, PKC agonists induce T cell activation and deleterious pro- inflammatory cytokine production. Secondary pharmacological agents combined with LRAs have been previously shown to reduce deleterious pro-inflammatory cytokine secretion without inhibiting HIV-1 viral reactivation. Histone deacetylase inhibitors (HDACi) are also known for inhibiting deleterious pro-inflammatory cytokines in the context of graft-versus-host disease and rheumatoid arthritis in addition to being known to synergize with PKC agonists. In this study we investigated whether HDACi and other epigenetic modifiers could decrease PKC- induced pro-inflammatory cytokines secretion while simultaneously synergizing with the PKC agonists Ingenol-3,20-dibenzoate, to enhance latency reversal.MethodsWe screened an epigenetic modifier library in health donor human peripheral blood mononuclear cells (PBMCs) to identify compounds (‘hits’) that reduced intracellular IL-6 pro-inflammatory cytokine production induced by PKC agonist Ingenol-3,20-dibenzoate. We then further tested reducers of intracellular IL-6 (‘hits’) for their ability to synergize with Ingenol-3,20-dibenzoate in the J-LAT 10.6 model of HIV-1 latency. The most promising epigenetic modifier from both screens, the HDACi Panobinostat, was then further tested for its ability to reduce pro-inflammatory cytokines and synergize with Ingenol-3,20-dibenzoate.ResultsWe show that co-treatment with Ingenol-3,20-dibenzoate and Panobinostat reduces pro-inflammatory cytokines and enhances latency reversal in vitro. Panobinostat suppressed pro-inflammatory cytokine production when combined with Ingenol-3,20- dibenzoate ex vivo when using aviremic patient cells, but antagonized Ingenol-3,20-dibenzoate dependent latency reversal ex vivo.ConclusionThe combination of Panobinostat and Ingenol-3,20-dibenzoate reduces deleterious cytokine production but is not a suitable latency reversal combination therapy.

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Yiliang Chen ◽  
Roy L Silverstein

Cardiotonic steroids such as ouabain, digoxin, and marinobufagenin are known ligands for the plasma membrane receptor Na/K-ATPase (NKA). These ligands are able to stimulate interaction of the NKA with other membrane and cytosolic proteins leading to cellular events such as activation of kinase cascades and gene transcription. Endogenous cardiotonic steroids have been detected in human circulation and interestingly their levels were elevated in human patients with hypertension, congestive heart failure and diabetes, all of which were associated with chronic systemic inflammation. However, the role of cardiotonic steroids in systemic inflammation and immunity has not been well studied. We previously discovered that ouabain stimulated macrophages to produce pro-inflammatory cytokines, many of which are known targets of the transcription factor, NF-κB. Therefore, we hypothesized that ouabain activates NF-κB pathway leading to pro-inflammatory cytokine production in macrophages. Using Western blot and densitometry analysis, we showed that physiological concentrations of ouabain promoted IκBα degradation (as low as 5 nM ouabain decreased IκBα level by 66.8%±7.4%, n=4). This was accompanied by NF-κB translocation from cytoplasm to the nuclei as shown by immunocytochemistry (% of nuclei NF-κB signals increased from 30.5%±2.3% in control to 62.2%±2.6% in ouabain-treated macrophages, n>25). Moreover, via quantitative RT-PCR (n=3), we found that ouabain increased mRNA levels of pro-inflammatory cytokines such as MCP-1 (3.2±1.1 fold), TNF-α (59.7±35.6 fold), and CXCL-10 (2.8±1.6 fold), all of which are known NF-κB targets. Consistent with the increase in mRNA level, we found that MCP-1 protein levels were elevated in both cell lysates (1.8±0.3 fold) and culture media (1.4±0.1 fold; n=4). Addition of an NF-κB inhibitor blocked MCP-1 production induced by ouabain (n=4). Mechanistically, ouabain stimulated interaction between NKA and TLR4 as shown by Co-Immunoprecipitation (n=3). Blockade of TLR4 signaling using a specific peptide inhibitor, CLI-095, abolished the ouabain effect on NF-κB activation (n=3). We conclude that ouabain activates NF-κB through NKA/TLR4 complex leading to pro-inflammatory cytokine production by macrophages.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Edina Pandur ◽  
Alex Balatinácz ◽  
Giuseppe Micalizzi ◽  
Luigi Mondello ◽  
Adrienn Horváth ◽  
...  

Abstract Background Pseudomonas aeruginosa is the most common Gram-negative bacterium associated with nosocomial respiratory infections. Lavender essential oil is mainly used in aromatherapy, but it has several pharmacological and therapeutic properties. Furthermore, it possesses antifungal and antibacterial activities. The anti-inflammatory activity of essential oils may depend on the composition and the ratio of the compounds. The constitution of the essential oils extracted from the different stages of flowering period varies, which makes it plausible that the collection time of the flowers influences the anti-inflammatory effects. Different types of essential oils reduce inflammation acting similarly by modulating the activity and action of the NFκB signalling pathway, which is the major regulator of the transcription of pro-inflammatory cytokines. Methods Lavender essential oils were distilled from lavender plant cultivated in Hungary and the flowers were harvested at the beginning and at the end of flowering period. The experiments were carried out on THP-1 human monocyte/macrophage cell line as in vitro cell culture model for monitoring the effects of lavender essential oils and the main compound linalool on P. aeruginosa LPS stimulated inflammation. The mRNA and protein levels of four pro-inflammatory cytokines, IL-6, IL-1β, IL-8 and TNFα were determined by Real Time PCR and ELISA measurements. The effects of essential oils were compared to the response to two NFκB inhibitors, luteolin and ACHP. Results Linalool and lavender essential oil extracted from plants at the beginning of flowering period were successful in decreasing pro-inflammatory cytokine production following LPS pretreatment. In case of IL-8 and IL-1β lavender oil showed stronger effect compared to linalool and both of them acted similarly to NFκB inhibitors. Pretreatments with linalool and lavender essential oil/beginning of flowering period prevented pro-inflammatory cytokine production compared to LPS treatment alone. Although lavender essential oil/end of flowering period decreased IL-6, IL-1β and IL-8 mRNA expression in case of LPS pretreatment, it was not capable to reduce cytokine secretion. Conclusion Based on our results it has been proven that lavender essential oil extracted at the beginning of flowering period is a potent inhibitor of the synthesis of four pro-inflammatory cytokines IL-6, IL-8, IL-β and TNFα of THP-1 cells. This supports the relevance of the collection of the lavender flowers from early blooming period for essential oil production and for the utilization as an anti-inflammatory treatment.


2021 ◽  
Vol 22 (3) ◽  
pp. 1497
Author(s):  
Edina Pandur ◽  
Kitti Tamási ◽  
Ramóna Pap ◽  
Gergely Jánosa ◽  
Katalin Sipos

Macrophages are essential immune cells of the innate immune system. They participate in the development and regulation of inflammation. Macrophages play a fundamental role in fighting against bacterial infections by phagocytosis of bacteria, and they also have a specific role in immunomodulation by secreting pro-inflammatory cytokines. In bacterial infection, macrophages decrease the serum iron concentration by removing iron from the blood, acting as one of the most important regulatory cells of iron homeostasis. We examined whether the Gram-positive and Gram-negative cell wall components from various bacterial strains affect the cytokine production and iron transport, storage and utilization of THP-1 monocytes in different ways. We found that S. aureus lipoteichoic acid (LTA) was less effective in activating pro-inflammatory cytokine expression that may related to its effect on fractalkine production. LTA-treated cells increased iron uptake through divalent metal transporter-1, but did not elevate the expression of cytosolic and mitochondrial iron storage proteins, suggesting that the cells maintained iron efflux via the ferroportin iron exporter. E. coli and P. aeruginosa lipopolysaccharides (LPSs) acted similarly on THP-1 cells, but the rates of the alterations of the examined proteins were different. E. coli LPS was more effective in increasing the pro-inflammatory cytokine production, meanwhile it caused less dramatic alterations in iron metabolism. P. aeruginosa LPS-treated cells produced a smaller amount of pro-inflammatory cytokines, but caused remarkable elevation of both cytosolic and mitochondrial iron storage proteins and intracellular iron content compared to E. coli LPS. These results prove that LPS molecules from different bacterial sources alter diverse molecular mechanisms in macrophages that prepossess the outcome of the bacterial infection.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ngoc Hoan Le ◽  
Chu-Sook Kim ◽  
Thai Hien Tu ◽  
Hye-Sun Choi ◽  
Byung-Sam Kim ◽  
...  

Obesity-induced skeletal muscle inflammation is characterized by increased macrophage infiltration and inflammatory cytokine production. In this study, we investigated whether 4-1BB, a member of the TNF receptor superfamily (TNFRSF9) that provides inflammatory signals, participates in obesity-induced skeletal muscle inflammation. Expression of the 4-1BB gene, accompanied by increased levels of inflammatory cytokines, was markedly upregulated in the skeletal muscle of obese mice fed a high-fat diet, in muscle cells treated with obesity factors, and in cocultured muscle cells/macrophages. In vitro stimulation of 4-1BB with agonistic antibody increased inflammatory cytokine levels in TNFα-pretreated muscle cells, and this effect was absent in cells derived from 4-1BB-deficient mice. Conversely, disruption of the interaction between 4-1BB and its ligand (4-1BBL) with blocking antibody decreased the release of inflammatory cytokines from cocultured muscle cells/macrophages. Moreover, deficiency of 4-1BB markedly reduced macrophage infiltration and inflammatory cytokine production in the skeletal muscle of mice fed a high-fat diet. These findings indicate that 4-1BB mediates the inflammatory responses in obese skeletal muscle by interacting with its ligand 4-1BBL on macrophages. Therefore, 4-1BB and 4-1BBL may be useful targets for prevention of obesity-induced inflammation in skeletal muscle.


2010 ◽  
Vol 69 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Robert F. Grimble

The objective of the present review is to provide an overview of the metabolic effects of pro-inflammatory cytokine production during infection and injury; to highlight the disadvantages of pro-inflammatory cytokine production and inflammatory stress on morbidity and mortality of patients; to identify the influence of genetics and adiposity on inflammatory stress in patients and to indicate how nutrients may modulate the inflammatory response in patients. Recent research has shown clearly that adipose tissue actively secretes a wide range of pro- and anti-inflammatory cytokines. Paradoxically, although inflammation is an essential part of the response of the body to infection, surgery and trauma, it can adversely affect patient outcome. The metabolic effects of inflammation are mediated by pro-inflammatory cytokines. Metabolic effects include insulin insensitivity, hyperlipidaemia, muscle protein loss and oxidant stress. These effects, as well as being present during infective disease, are also present in diseases with a covert inflammatory basis. These latter diseases include obesity and type 2 diabetes mellitus. Inflammatory stress also increases during aging. The level of cytokine production, within individuals, is influenced by single nucleotide polymorphisms (SNP) in cytokine genes. The combination of SNP controls the relative level of inflammatory stress in both overt and covert inflammatory diseases. The impact of cytokine genotype on the intensity of inflammatory stress derived from an obese state is unknown. While studies remain to be done in the latter context, evidence shows that these genomic characteristics influence morbidity and mortality in infectious disease and diseases with an underlying inflammatory basis and thereby influence the cost of in-patient obesity. Antioxidants andn-3 PUFA alter the intensity of the inflammatory process. Recent studies show that genotypic factors influence the effectiveness of immunonutrients. A better understanding of this aspect of nutrient–gene interactions and of the genomic factors that influence the intensity of inflammation during disease will help in the more effective targeting of nutritional therapy.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Svetlana A Diditchenko ◽  
Alexei V Navdaev ◽  
Martin O Spycher ◽  
Samuel D Wright

Elevated levels of circulating inflammatory markers predict an unfavorable cardiovascular outcome in acute coronary syndrome patients. CSL112 is human apolipoprotein A-I (apoA-I), reconstituted with phosphatidylcholine to form HDL particles suitable for infusion. Addition of CSL112 to stimulated human whole blood ex vivo strongly reduces pro-inflammatory cytokine production. Infusion of CSL112 into human subjects or addition to human plasma ex vivo causes remodeling of endogenous HDL. Similar remodeling occurs upon incubation of CSL112 with purified HDL3 and results in accumulation of three HDL species: enlarged HDL (HDL2), a smaller, dense species (HDL3c), and lipid-poor apoA-I (pre-β1 HDL). Study aim was to determine the anti-inflammatory activity of remodeled HDL species. CSL112 was incubated with HDL3 and the products of particle remodeling were purified by ultracentrifugation. The inhibitory effects on pro-inflammatory cytokine production were examined using human peripheral blood mononuclear cells (PBMC) stimulated with phytohemagglutinin-M (PHA-M) in vitro. Lipid-poor apoA-I, HDL3c as well as parent CSL112 exerted powerful inhibitory effects on secretion of pro-inflammatory mediators (> 89.2% + 4.0% inhibition of TNF-α, IL-1β, IL-6 and Mip-1β); HDL3 and HDL2 were much less effective (< 54.1% + 3.9% inhibition). The extent of inhibition correlated positively with induction of the transcription repressor ATF3, a negative regulator of pro-inflammatory cytokine production, with lipid-poor apoA-I and HDL3c inducing higher protein levels of ATF3 in PHA-stimulated PBMC compared to control medium, HDL3 or HDL2. Anti-inflammatory activity of the remodeled species also correlated with their ability to support cellular cholesterol efflux via the ABCA1 transporter: lipid-poor apoA-I and HDL3c were potent acceptors of cholesterol; HDL2 was inactive. The ability to generate HDL species with high cholesterol efflux and anti-inflammatory activity makes CSL112 a promising candidate for removing cholesterol and reducing inflammation in atherosclerotic plaque, thus reducing the high risk of early recurrent atherothrombotic events following acute MI (AMI). A Phase IIb trial (AEGIS-I; NCT02108262) of CSL112 in AMI patients is ongoing.


Sign in / Sign up

Export Citation Format

Share Document