scholarly journals Structure of the fission yeast actomyosin ring during constriction

2017 ◽  
Author(s):  
Matthew T. Swulius ◽  
Lam T. Nguyen ◽  
Mark S. Ladinsky ◽  
Davi R. Ortega ◽  
Samya Aich ◽  
...  

AbstractCell division in many eukaryotes is driven by a ring containing actin and myosin. While much is known about the main proteins involved, the precise arrangement of actin filaments within the contractile machinery, and how force is transmitted to the membrane remains unclear. Here we use cryosectioning and cryo-focused ion beam milling to gain access to cryo-preserved actomyosin rings in Schizosaccharomyces pombe for direct three-dimensional imaging by electron cryotomography. Our results show that straight, overlapping actin filaments, running nearly parallel to each other and to the membrane, form a loose bundle of approximately 150 nm in diameter that “saddles” the inward-bending membrane at the leading edge of the division septum. The filaments do not make direct contact with the membrane. Our analysis of the actin filaments reveals the variability in filament number, nearest-neighbor distances between filaments within the bundle, their distance from the membrane and angular distribution with respect to the membrane.Significance StatementMost eukaryotic cells divide using a contractile actomyosin ring, but its structure is unknown. Here we use new specimen preparation methods and electron cryotomography to image constricting rings directly in 3D, in a near-native state in the model organism Schizosaccharomyces pombe. Our images reveal the arrangement of individual actin filaments within the contracting actomyosin ring.

2018 ◽  
Vol 115 (7) ◽  
pp. E1455-E1464 ◽  
Author(s):  
Matthew T. Swulius ◽  
Lam T. Nguyen ◽  
Mark S. Ladinsky ◽  
Davi R. Ortega ◽  
Samya Aich ◽  
...  

Cell division in many eukaryotes is driven by a ring containing actin and myosin. While much is known about the main proteins involved, the precise arrangement of actin filaments within the contractile machinery, and how force is transmitted to the membrane, remains unclear. Here we use cryosectioning and cryofocused ion beam milling to gain access to cryopreserved actomyosin rings in Schizosaccharomyces pombe for direct 3D imaging by electron cryotomography. Our results show that straight, overlapping actin filaments, running nearly parallel to each other and to the membrane, form a loose bundle of ∼150 nm in diameter that “saddles” the inward-bending membrane at the leading edge of the division septum. The filaments do not make direct contact with the membrane. Our analysis of the actin filaments reveals the variability in filament number, nearest-neighbor distances between filaments within the bundle, their distance from the membrane, and angular distribution with respect to the membrane.


2011 ◽  
Vol 17 (3) ◽  
pp. 292-295 ◽  
Author(s):  
T. Yamamoto ◽  
Y. Hanaoka ◽  
N. Mayama ◽  
T. Kaito ◽  
T. Adachi ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Benjamin D Engel ◽  
Miroslava Schaffer ◽  
Luis Kuhn Cuellar ◽  
Elizabeth Villa ◽  
Jürgen M Plitzko ◽  
...  

Chloroplast function is orchestrated by the organelle's intricate architecture. By combining cryo-focused ion beam milling of vitreous Chlamydomonas cells with cryo-electron tomography, we acquired three-dimensional structures of the chloroplast in its native state within the cell. Chloroplast envelope inner membrane invaginations were frequently found in close association with thylakoid tips, and the tips of multiple thylakoid stacks converged at dynamic sites on the chloroplast envelope, implicating lipid transport in thylakoid biogenesis. Subtomogram averaging and nearest neighbor analysis revealed that RuBisCO complexes were hexagonally packed within the pyrenoid, with ∼15 nm between their centers. Thylakoid stacks and the pyrenoid were connected by cylindrical pyrenoid tubules, physically bridging the sites of light-dependent photosynthesis and light-independent carbon fixation. Multiple parallel minitubules were bundled within each pyrenoid tubule, possibly serving as conduits for the targeted one-dimensional diffusion of small molecules such as ATP and sugars between the chloroplast stroma and the pyrenoid matrix.


2004 ◽  
Vol 12 (6) ◽  
pp. 26-29 ◽  
Author(s):  
Toshie Yaguchi ◽  
Yasushi Kuroda ◽  
Mitsuru Konno ◽  
Takeo Kamino ◽  
Tsuyohsi Ohnishi ◽  
...  

In characterization or failure analysis of new materials and semiconductor devices, the requirements for three dimensional observation and analysis are rapidly increasing. We discuss techniques for specimen preparation, three-dimensional observation, and elemental analysis of semiconductor devices that we developed using a system consisting of a dedicated focused ion beam (FIB) instrument and a scanning transmission electron microscope (STEM). The system utilizes a FIB-STEM compatible specimen holder with a specially designed rotation mechanism, which allows 360° rotation of a specimen on a conical stage (needle stub) around the ion beam axis of the FIB system and 360° rotation perpendicular to the electron beam in the STEM. A piece of sample (micro sample) is extracted from a specific-site by the micro-sampling technique and mounted on the needle stub. Instruments used in the study are the Hitachi FB-2100 FIB system with a micro-sampling attachment and the HD-2300 field emission 200kV STEM.


2020 ◽  
Author(s):  
Zhexin Wang ◽  
Michael Grange ◽  
Thorsten Wagner ◽  
Ay Lin Kho ◽  
Mathias Gautel ◽  
...  

AbstractSarcomeres are the force-generating and load-bearing devices of muscles. A precise molecular understanding of how the entire sarcomere is built is required to understand its role in health, disease and ageing. Here, we determine the in situ molecular architecture of vertebrate skeletal sarcomeres through electron cryo-tomography of cryo-focused ion beam-milled native myofibrils. The reconstructions reveal the three-dimensional organisation and interaction of actin and myosin filaments in the A-band, I-band and Z-disc and demonstrate how α -actinin cross-links antiparallel actin filaments to form a mesh-like structure in the Z-disc at an unprecedented level of molecular detail. A prominent feature is a so-far undescribed doublet of α-actinin cross-links with ∼ 6 nm spacing. Sub-volume averaging shows the interaction between myosin, tropomyosin and actin in molecular detail at ∼ 10 Å resolution and reveals two coexisting conformations of actin-bound heads. The flexible orientation of the lever arm and the essential and regulatory light chains allow the two heads of the “double-headed” myosin not only to interact with the same actin filament but also to split between two actin filaments. Our results provide new insights into the conformational plasticity and fundamental organisation of vertebrate skeletal muscle and serve as a strong foundation for future in situ investigations of muscle diseases.


2007 ◽  
Vol 13 (6) ◽  
pp. 408-417 ◽  
Author(s):  
Alfred Cerezo ◽  
Peter H. Clifton ◽  
Sergio Lozano-Perez ◽  
Peter Panayi ◽  
Gang Sha ◽  
...  

Over the last few years there have been significant developments in the field of three-dimensional atom probe (3DAP) analysis. This article reviews some of the technical compromises that have led to different instrument designs and the recent improvements in performance. An instrument has now been developed, based around a novel reflectron configuration combining both energy compensation and focusing elements, that yields a large field of view and very high mass resolution. The use of laser pulsing in the 3DAP, together with developments in specimen preparation methods using a focused ion-beam instrument, have led to a significant widening in the range of materials science problems that can be addressed with the 3DAP. Recent studies of semiconductor materials and devices are described.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


Sign in / Sign up

Export Citation Format

Share Document