scholarly journals Regulating AMPKα and insulin level by Vinegar, Swimming and Refeeding on High-Fat Diet Rats to Rebuild Lipid Homeostasis

2020 ◽  
Author(s):  
Yuan Yang ◽  
Feng Zhang ◽  
Xiao Xiao ◽  
Chunlian Ma ◽  
Hua Liu ◽  
...  

AbstractOur aims were to explore the effects of dietary and behavior interventions on lipometabolism caused by unhealthy high-fat diet and the best method to rebuild lipid homeostasis of this lifestyle. Apart from normal diet rats, 34 rats were fed with high-fat emulsion for 4 weeks before being divided into 4 groups and intervened for another 4 weeks. 8 of them were classified into high-fat control group and 9 were sorted into high-fat diet with rice vinegar group. Meanwhile, 10 were put into high-fat diet with swimming group and 7 were just for refeeding normal diet group. Then the data of body weight was recorded and analyzed. Serum, pancreas, liver, cardiac tissues and epididymis adipose were sampled as required. Indexes of serum were tested by kits. AMPKα, HNF1α, CTRP6 from tissues were detected by western blot. According to our experiments, Swimming and refeeding groups reflected a better regulation on lipid homeostasis mainly by up-regulating the expression of pancreas AMPKα. To be more specific, the refeeding rats showed lower T-CHO (P<0.001) and LDL-C (P<0.05), but higher weight gain (P<0.001),insulin level (P<0.01)and pancreas AMPKα (P<0.01)than high-fat control rats. Compared with rats experimented by swimming or rice vinegar, they showed higher weight gain (P<0.001),insulin level (P<0.01)and HNF1α, but lower of CTRP6. In summary, refeeding diet functioned better in regulating the lipometabolic level after high-fat diet. Whatever approach mentioned above we adopted to intervene, the best policy to keep the balance of lipid homeostasis is to maintain a healthy diet.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuan Yang ◽  
Nan-Jun Xu ◽  
Jia-Hui Li ◽  
Ling-Feng Zeng ◽  
Gui-Hong Liang ◽  
...  

Our aim was to explore the effects of dietary and behavior interventions on lipometabolism caused by an unhealthy high-fat diet and the best method to rebuild lipid homeostasis of this lifestyle. Apart from normal diet rats, 34 rats were fed with high-fat emulsion for 4 weeks and then intervened for another 4 weeks. Eight of them were classified into high-fat control group, and 9 were sorted into high-fat diet with rice vinegar group. Meanwhile, 10 were put into high-fat diet in swimming group, and 7 were just for refeeding normal diet group. Then, the data of body weight was recorded and analyzed. Indexes of serum samples were tested by kits. AMPKα, HNF1α, and CTRP6 in pancreas, liver, cardiac, and epididymis adipose tissues were detected by western blot. According to our experiments, swimming and refeeding groups reflected a better regulation on lipid homeostasis mainly by upregulating the expression of pancreas AMPKα. To be more specific, the refeeding rats showed lower T-CHO ( P < 0.001 ) and LDL-C ( P < 0.05 ), but higher weight gain ( P < 0.001 ), insulin level ( P < 0.01 ), and pancreas AMPKα ( P < 0.01 ) than high-fat control rats. Compared with rats intervened by swimming or rice vinegar, they showed higher weight gain ( P < 0.001 ), insulin level ( P < 0.01 ), and HNF1α, but lower of CTRP6. In summary, refeeding diet functioned better in regulating the lipometabolic level after high-fat diet. Whatever approach mentioned above we adopted to intervene, the best policy to keep the balance of lipid homeostasis is to maintain a healthy diet.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1236-1236
Author(s):  
Joohee Oh ◽  
Hyun-Sook !Kim

Abstract Objectives Cinnamon is one of the oldest spices widely used in traditional medicine and also currently used by people all around the world. Cinnamon has been known for modulating metabolic disorders by regulating insulin sensitivity. The aim of this study was to investigate the anti-obese effects of cinnamon extracts in high-fat-diet induced obese mice model. Methods After a week of adaptation period, the 6-week-old male C57BL/6J mice were randomly divided into 4 groups (n = 11 for each group) of the normal diet group (ND), the high-fat-diet group (HF), the normal diet with 1% cinnamon extracts (NC), and the high-fat diet with 1% cinnamon extracts (HC). All groups were treated for 14 weeks. Results In final body weight and body weight gain, NC group was significantly lower than ND group and HC group was significantly lower than HF group (P = 0.000). In serum TG (Triglyceride) levels and TC (Total cholesterol) levels, NC group showed significantly decreased level compared to that of ND group and HC group represented significantly decreased level compared to that of HF group (P = 0.000). Conclusions The present data showed NC group and HC group showed lower final body weight and body weight gain than ND group and HF group. Also, NC group and HC group showed the decreased level of TG (Triglyceride) and TC (Total cholesterol) compared to ND group and HF group. The further indicators of insulin-related factors are in progress. Funding Sources This study received no external funding.


Author(s):  
Hui-Li Lin ◽  
Pei-Wen Cheng ◽  
Yi-Chen Tu ◽  
Bor-Chun Yeh ◽  
Bin-Nan Wu ◽  
...  

Abstract Objectives Eugenosedin-A (Eu-A), an adrenergic and serotonergic antagonist, is known to have anti-metabolic syndrome effects. In this study, we evaluated its protective effects against diabetes mellitus (DM) in spontaneous hypertensive rats (SHR) and compared it with two anti-diabetes medications, glibenclamide (Gli) and pioglitazone (Pio). Methods We divided 10-week-old SHRs into five groups: a control group fed a normal diet; an untreated DM group induced by injecting the SHRs with STZ/NA and feeding them a high-fat diet (HFD); and three treated groups (after giving STZ/NA and HFD) gavage given with Eu-A, Gli or Pio (5 mg/kg per day) for 4 weeks. Key findings The untreated DM group weighed less and had hyperglycaemia, hypoinsulinemia and hyperlipidemia. They were also found to have aberrant glucose-dependent insulin pathways, glucose metabolism and lipid synthesis proteins, while the controls did not. Eu-A, Gli and Pio ameliorated the above biochemical parameters in the treatment groups. Eu-A and Pio, but not Gli, improved hypertension and tachycardia. Conclusions Taken together, Eu-A ameliorated DM, hypertension and tachycardia by improving glucose, lipid homeostasis and anti-adrenergic, serotonergic activities. We concluded that Eu-A could be used in the development of an effective agent for controlling DM and its complications.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Huanhuan Feng ◽  
Lili Yu ◽  
Guojun Zhang ◽  
Guoyan Liu ◽  
Can Yang ◽  
...  

High mobility group box 1 protein (HMGB1) is a molecule related to the development of inflammation. Autophagy is vital to maintain cellular homeostasis and protect against inflammation of adipocyte injury. Our recent work focused on the relationship of HMGB1 and autophagy in 3T3-L1 cells. In vivo experimental results showed that, compared with the normal-diet group, the high-fat diet mice displayed an increase in adipocyte size in the epididymal adipose tissues. The expression levels of HMGB1 and LC3II also increased in epididymal adipose tissues in high-fat diet group compared to the normal-diet mice. The in vitro results indicated that HMGB1 protein treatment increased LC3II formation in 3T3-L1 preadipocytes in contrast to that in the control group. Furthermore, LC3II formation was inhibited through HMGB1 knockdown by siRNA. Treatment with the HMGB1 protein enhanced LC3II expression after 2 and 4 days but decreased the expression after 8 and 10 days among various differentiation stages of adipocytes. By contrast, FABP4 expression decreased on the fourth day and increased on the eighth day. Hence, the HMGB1 protein modulated autophagy-related proteins and lipid-metabolism-related genes in adipocytes and could be a new target for treatment of obesity and related metabolic diseases.


Author(s):  
Pipit Pitriani ◽  
◽  
Wang-Lok Lee ◽  
Hee-Geun Park ◽  
◽  
...  

The incidence of obesity has been spreading throughout the world. Many of the complications caused by obesity, such as inflammation and impaired liver function. This study aimed to determine the effect of supplementation resveratrol and chrysin on inflammation and liver function of obese mice fed a high-fat diet. 40 mice (C57BL/6) were randomly divided into four groups: 10 in the normal diet (NC), 10 control group on a high-fat diet (HC), 10 in the high-fat diet with resveratrol (HRE), and 10 in the high-fat diet group with chrysin (HCH). Resveratrol 25 mg and 50mg of chrysin supplement per kg body weight were orally given with 0.1ml solution of Dimethyl Sulfoxide (DMSO) dissolved in for 15 weeks (4 times/week). The calorie intake of the group supplemented by resveratrol and chrysin significantly decreased. Group with high-fat diet, resveratrol, and chrysin increased body weight significantly compared to the normal diet group. The liver weight decreased in the resveratrol but not in the chrysin group. TNFα did not decrease in the resveratrol and chrysin group while IL1β significantly decreased. TLR 4 significantly decreased only in the chrysin group, while IL10 only increased in the resveratrol group. The collagen was decreased by resveratrol and chrysin supplementation while fibronectin was not affected by resveratrol or chrysin. The inflammatory process in the liver of obese mice fed a high-fat diet can be reduced by supplementing resveratrol and chrysin.


2021 ◽  
Vol 22 (9) ◽  
pp. 4444
Author(s):  
Miey Park ◽  
Eun-Jung Park ◽  
So-Hyeun Kim ◽  
Hae-Jeung Lee

Obesity has become a worldwide health problem, and many significant inflammatory markers have been associated with the risk of side effects of obesity and obesity-related diseases. After a normal diet or high-fat diet with high-fructose water (HFHF) for 8 weeks, male Wistar rats were divided randomly into four experimental groups according to body weight. Next, for 8 weeks, a normal diet, HFHF diet, and HFHF diet with L. plantarum strains ATG-K2 or ATG-K6 were administered orally. Compared to the control group, the HFHF diet group showed significantly increased visceral fat, epididymal fat, and liver weight. The mRNA and protein expression levels of FAS and SREBP-1c were higher in the HFHF diet group than in the HFHF diet with L. plantarum strains ATG-K2 and ATG-K6. The HFHF diet with L. plantarum strain ATG-K2 showed significantly decreased inflammatory cytokine expression in the serum and small intestine compared to the HFHF diet group. Furthermore, histological morphology showed minor cell injury, less severe infiltration, and longer villi height in the small intestine ileum of the HFHF diet with L. plantarum strains groups than in the HFHF diet group. These results suggest that L. plantarum strains K2 and K6 may help reduce intestinal inflammation and could be used as treatment alternatives for intestinal inflammatory reactions and obesity.


Author(s):  
Rizka Veni ◽  
Awal Prasetyo ◽  
Muflihatul Muniroh

This study aims to analyze the effect of combination of motor vehicle particular matter exposure and high-fat diet in kidney histopathology, creatinine levels, and MDA levels in Wistar rats. This study used a posttest-only control group design. Eighteen healthy male Wistar rats were divided into three groups. The intervention groups received motor vehicle fume exposure for 100 s with normal diet (X1) or high-fat diet (X2), and the control group received no exposure (C). Data analysis was processed with a SPSS 25.0 computer program by using the one-way ANOVA test followed by post hoc LSD. The degree of kidney histopathological damage showed significant differences between the X1 and X2 groups when compared with the control group (p < 0.05). The results of the creatinine level examination found a significant difference between the X2 and C groups (p < 0.05) and the treatment groups X1 and X2 (p < 0.05). The results of kidney MDA level examination showed a significant difference between the treatment groups (X1 and X2) and the control group (p < 0.05). The combination of particular matter of motor vehicle fumes exposure and high-fat diet could induce kidney damage through histopathological change and increased creatinine levels and kidney MDA levels in Wistar rats.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Qishu Zhou ◽  
Chunyu Liang ◽  
Yafei Li ◽  
Yi Yan

Objective  To investigate the effect of one-time high-intensity intermittent exercise in white fat autophagy in obese rats and provide a theoretical basis of the molecular mechanism of exercise fat loss. Methods  Eighteen male 3-weeks-old rats were selected and divided into control group fed with normal diet (C), high-fat diet group fed with high fat diet (H). After 16 weeks, there were twelve obesity rats that divided into diet group (HS) and exercise group (HE). The other six control group rats of 19 weeks age were used as the standard (CS group). OE group did the high intensity intermittent exercise once. The CS group and the CS group were kept quietly. Three groups were taken subcutaneous white adipose tissue(S) and epididymal white adipose tissue (E) immediately after exercise. Mensurate the expression of LC3 gene in the tissue using the fluorescent quantitative PCR. Results 1. The expression of LC3 mRNA from white fat tissue was different to the tissues, which the expression of epididymal white adipose tissue of each group was higher than that in subcutaneous white adipose tissue (P <0.01). 2. Compared with CS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.01) and the expression of the subcutaneous white adipose tissue increased from HS group (P <0.05). 3. Compared with OS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.05) and the expression of subcutaneous white adipose tissue decreased from OS group. Conclusions The expression of LC3mRNA in epididymal white fat adipose tissue of rats was significantly higher than that of subcutaneous white fat. The changes of LC3mRNA expression of adipose tissue caused by high-fat diet have tissue differences. One-time high-intensity intermittent exercise can reduce the expression of LC3mRNA in fat tissue of obese rats. Its regulatory mechanism needs to be further studied.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Dale E Mais ◽  
Thomas Vihtelic ◽  
Chidozie Amuzie ◽  
Steven Denham ◽  
John R Swart ◽  
...  

Small animal models of atherosclerosis are commonly used in drug studies; however, the results often fail to translate into the clinic. A large animal model that more accurately reflects the human disease is needed. We recently developed a transgenic Yucatan pig model in which the LDL receptor (LDLR) gene is knocked out. Five groups of Yucatan pigs (N=4 per group), either wild type (LDLR+/+) or heterozygote (LDLR+/-) were fed a normal diet or a high fat diet for a six month period. One of the heterozygote/high fat diet groups in addition received a daily dose of a statin (atorvastatin) at 3 mg/kg. Every two weeks during the study a variety of clinical chemistry parameters were measured. At study termination, select arteries were collected, stained for lipid deposits and quantitated. In addition, sections of these arteries were prepared for immunohistochemistry to detect selected markers of macrophage infiltration into the atherosclerotic plaques. As expected, pigs fed a high fat diet gained significantly more weight at six months whether they were wild type or LDLR+/-. Atorvastatin appeared to attenuate this weight gain. There were significant increases in total cholesterol, HDL and LDL in pigs fed the high fat diet compared to their corresponding control group. The group receiving the atorvastatin had reduced values of these parameters compared to controls showing that a statin had a beneficial effect on lipid levels even in a high fat diet scenario. VLDL levels were not affected but there were triglyceride changes across the groups. Liver function was unchanged based on total bilirubin and AST while ALT measurements were altered in some of the groups. Immunohistochemistry and histomorphometry was performed on some arteries. Atorvastatin-induced amelioration of hypercholesterolemia in this model underscores its translational utility.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Tieqiao Wang ◽  
Qiaomin Wu ◽  
Tingqi Zhao

Kaempferol is a dietary flavanol that regulates cellular lipid and glucose metabolism. Its mechanism of action in preventing hepatic steatosis and obesity-related disorders has yet to be clarified. The purpose of this research was to examine kaempferol’s antiobesity effects in high-fat diet- (HFD-) fed mice and to investigate its impact on their gut microbiota. Using a completely randomized design, 30 mice were equally assigned to a control group, receiving a low-fat diet, an HFD group, receiving a high-fat diet, and an HFD+kaempferol group, receiving a high-fat diet and kaempferol doses of 200 mg/kg in the diet. After eight weeks, the HFD mice displayed substantial body and liver weight gain and high blood glucose and serum cholesterol levels. However, treatment with kaempferol moderated body and liver weight gain and elevation of blood glucose and serum cholesterol and triglyceride levels. Examination of 16S ribosomal RNA showed that HFD mice exhibited decreased microbial diversity, but kaempferol treatment maintained it to nearly the same levels as those in the control group. In conclusion, kaempferol can protect against obesity and insulin resistance in mice on a high-fat diet, partly through regulating their gut microbiota and moderating the decrease in insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document