scholarly journals Integrin Affinity Modulation Critically Regulates Atherogenic Endothelial Activation in vitro and in vivo

2020 ◽  
Author(s):  
Zaki Al-Yafeai ◽  
Jonette M. Peretik ◽  
Brenna H. Pearson ◽  
Umesh Bhattarai ◽  
Dongdong Wang ◽  
...  

AbstractWhile vital to platelet and leukocyte adhesion, the role of integrin affinity modulation in adherent cells remains controversial. In endothelial cells, atheroprone hemodynamics and oxidized lipoproteins drive an increase in the high affinity conformation of α5β1 integrins in endothelial cells in vitro, and α5β1 integrin inhibitors reduce proinflammatory endothelial activation to these stimuli in vitro and in vivo. However, the importance of α5β1 integrin affinity modulation to endothelial phenotype remains unknown. We now show that endothelial cells (talin1 L325R) unable to induce high affinity integrins initially adhere and spread, but show significant defects in nascent adhesion formation. In contrast, overall focal adhesion number, area, and composition in stably adherent cells are similar between talin1 wildtype and talin1 L325R endothelial cells. However, talin1 L325R endothelial cells fail to induce high affinity α5β1 integrins, fibronectin deposition, and proinflammatory responses to atheroprone hemodynamics and oxidized lipoproteins. Inducing the high affinity conformation of α5β1 integrins in talin1 L325R cells partially restores fibronectin deposition, whereas NF-κB activation and maximal fibronectin deposition require both integrin activation and other integrin-independent signaling. In endothelial-specific talin1 L325R mice, atheroprone hemodynamics fail to promote inflammation and macrophage recruitment, demonstrating a vital role for integrin activation in regulating endothelial phenotype.

2006 ◽  
Vol 26 (7) ◽  
pp. 2519-2530 ◽  
Author(s):  
Nan Tang ◽  
Fiona Mack ◽  
Volker H. Haase ◽  
M. Celeste Simon ◽  
Randall S. Johnson

ABSTRACT The tumor suppressor von Hippel-Lindau protein (pVHL) is critical for cellular molecular oxygen sensing, acting to target degradation of the hypoxia-inducible factor alpha transcription factor subunits under normoxic conditions. We have found that independent of its function in regulating hypoxic response, the VHL gene plays a critical role in embryonic endothelium development through regulation of vascular extracellular matrix assembly. We created mice lacking the VHL gene in endothelial cells; these conditional null mice died at the same stage as homozygous VHL-null mice, with similar vascular developmental defects. These included defective vasculogenesis in the placental labyrinth, a collapsed endocardium, and impaired vessel network patterning. The defects in embryonic vascularization were correlated with a diminished vascular fibronectin deposition in vivo and defective endothelial extracellular fibronectin assembly in vitro. We found that the impaired migration and adhesion of VHL-null endothelial cells can be partially rescued by the addition of back exogenous fibronectin, which indicates that pVHL regulation of fibronectin deposition plays an important functional role in vascular patterning and maintenance of vascular integrity.


2017 ◽  
Vol 9 (6) ◽  
pp. 546-560 ◽  
Author(s):  
Rui Yan ◽  
Matijs van Meurs ◽  
Eliane R. Popa ◽  
Rianne M. Jongman ◽  
Peter J. Zwiers ◽  
...  

Sepsis is a severe systemic inflammatory response to infection. Endothelial activation and dysfunction play a critical role in the pathophysiology of sepsis and represent an important therapeutic target to reduce sepsis mortality. Interferon regulatory factor 1 (IRF-1) was recently identified as a downstream target of TNF-α-mediated signal transduction in endothelial cells. The aim of this study was to explore the importance of IRF-1 as a regulator of lipopolysaccharide (LPS)-induced endothelial proinflammatory activation. We found that renal IRF-1 was upregulated by LPS in vivo as well as in LPS-stimulated endothelial cells in vitro. Furthermore, we identified intracellular retinoic acid inducible gene-I (RIG-I) as a regulator of LPS-mediated IRF-1 induction. IRF-1 depletion specifically resulted in diminished induction of VCAM-1 in response to LPS, but not of E-selectin or ICAM-1, which was independent of NFκB signaling. When both IRF-1 and the RIG-I adapter protein mitochondrial antiviral signaling (MAVS) were absent, VCAM-1 induction was not additionally inhibited, suggesting that MAVS and IRF-1 reside in the same signaling pathway. Surprisingly, E-selectin and IL-6 induction were no longer inhibited by MAVS knockdown when IRF-1 was also absent, revealing a redundant endothelial activation pathway. In summary, we report an IRF-1-mediated proinflammatory signaling pathway that specifically regulates LPS-mediated VCAM-1 expression, independent of NFκB.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4758-4758
Author(s):  
Barbara Muz ◽  
Feda Azab ◽  
Pilar De La Puente ◽  
Scott A Rollins ◽  
Richard Alvarez ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a plasma cell malignancy localized in the bone marrow (BM). Despite the introduction of novel therapies more than 70% of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) play a key role on proliferation of MM and that its inhibition with small-molecule inhibitors sensitized MM cells to therapy. However, these small molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. In this study, we tested inhibition of P-selectin and PSGL-1 using functionally blocking monoclonal antibodies to sensitize MM cells to therapy. Methods: The humanized monoclonal antibodies anti-P-selectin (SelG1) and anti-PSGL-1 (SelK2) were obtained from Selexys Pharmaceuticals. Endothelial cells, stromal cells derived from MM patients, and MM cell lines (MM1s, H929, OPM1 and RPMI8226) were used for in vitro expression, proliferation, apoptosis and immuno-blotting assays. The expression of P-selectin and PSGL-1 were tested by the interaction of SelG1 (5-20µg/mL) and SelK2 (5-20µg/mL) antibodies with endothelial cells, stromal cells and MM cells for 1hr, followed by addition of a secondary-FITC antibody and flow cytometry analysis. For adhesion assay, cells were treated with increasing concentrations of SelG1 and SelK2 for 1hr; pre-labeled MM cells were then applied to unlabeled endothelial or stromal cells for 1hr, non-adherent cells were washed, and adherent cells were analyzed by a fluorescent reader. For proliferation, MM1s-GFP+ cells cultured alone, with stroma, or with endothelial cells; and were treated with, or without, bortezomib and carfilzomib, in the presence, or absence, of SelG1 and SelK2 antibodies, and proliferation was determined by flow cytometry. Protein expression associated with survival, apoptosis and cell cycle signaling was analyzed by western blotting. For in vivo, MM1s-Luc-GFP cells were injected intravenously into SCID mice and tumor progression followed for 4 weeks. Anti-mouse-P-selectin antibody was used to inhibit P-selectin in the mouse endothelial cells and stroma. Likewise, SelK2 and anti-mouse PSGL-1 were used to inhibit PSGL-1 on human MM cells in the mouse microenvironment, respectively. Mice were divided into 6 groups (1) vehicle treated control, (2) anti-mouse-P-selectin (5mg/kg) alone, (3) SelK2 (5mg/kg) and anti-mouse-PSGL-1 (5mg/kg) alone, (4) bortezomib (0.5mg/kg) alone, (5) a combination of anti-mouse-P-selectin and bortezomib, and (6) a combination of SelK2 (5mg/kg), anti-mouse-PSGL-1 (5mg/kg) and bortezomib. Anti-mouse-P-selectin, anti-mouse–PSGL-1, SelK2 and bortezomib were administered intraperitoneally twice a week. Results: The half-life of SelG1 in a Phase I clinical study was previously shown to be 363 hours while the half-life of SelK2 in a primate study was approximately 100 hours. P-selectin expression was detected on endothelial and stromal cells using the SelG1 antibody, while no expression was found on MM cells. PSGL-1 was highly expressed on MM cells as well as on endothelial cells and stromal cells as detected by SelK2 monoclonal antibody. Inhibition of P-selectin and PSGL-1 with SelG1 or SelK2, respectively, decreased MM cell adhesion to endothelial and stromal cells, and decreased the proliferation of MM cells induced by stromal and endothelial cells. Similarly, inhibition of the interaction between P-selectin and PSGL-1 sensitized MM cells to bortezomib and carfilzomib in vitro. In vivo results demonstrated that inhibition of the P-selectin or PSGL-1 as single agents delay tumor growth compared to non-treated mice and that it enhances the effect of bortezomib. Conclusions: These results demonstrate that inhibition of P-selectin and PSGL-1 by SelG1 and SelK2 antibodies, respectively, disrupts the interaction between MM cells and BM microenvironment and decreases adhesion and proliferation of MM cells. Moreover, inhibition of P-selectin and PSGL-1 increased the sensitivity of MM cells to bortezomib and carfilzomib in vitro, and to bortezomib in vivo. These data provides a basis for future clinical trials for sensitization of refractory MM patients to therapy by inhibition of P-selectin and PSGL-1 using SelG1 and SelK2 monoclonal antibodies. Disclosures Rollins: Selexys: Employment. Alvarez:Selexys: Employment. Kawar:Selexys: Employment. Azab:Selexys: Research Funding.


2020 ◽  
Author(s):  
Zaki Al-Yafeai ◽  
Brenna H. Pearson ◽  
Jonette M. Peretik ◽  
Elizabeth D. Cockerham ◽  
Kaylea A. Reeves ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2424-2432 ◽  
Author(s):  
Matthias Gunzer ◽  
Helge Riemann ◽  
Yasmin Basoglu ◽  
Anja Hillmer ◽  
Carsten Weishaupt ◽  
...  

Abstract Toll-like receptor (TLR) ligands lead to the induction of proinflammatory cytokines and are potent enhancers of specific immune responses. We show here that a single systemic dose of R-848, a ligand for TLR7, potently enhanced hapten sensitization during the induction of contact hypersensitivity (CHS). However, R-848 administration also resulted in a rapid and almost complete depletion of leukocytes from the blood. This effect was transient and was associated with general induction of endothelial adhesiveness. In response to R-848, endothelial cells up-regulated adhesion molecules in vitro and in vivo and leukocytes exhibited increased rolling on endothelia in R-848-treated animals. Adhesion molecule induction appeared to be a direct effect, because endothelial cells expressed TLR7 in vitro and in vivo. After R-848 treatment, the tissue residence time of leukocytes was markedly prolonged in all major peripheral organs. The resulting transiently reduced availability of peripheral-blood leukocytes (PBLs) (TRAP) significantly inhibited otherwise potent CHS responses until the effector cells returned. Thus, although TLR7 ligands are effective adjuvants for the induction of cell-mediated immunity, they can transiently inhibit the elicitation of localized immune responses, possibly due to a systemic endothelial activation throughout the vasculature. (Blood. 2005;106:2424-2432)


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


1997 ◽  
Vol 77 (06) ◽  
pp. 1182-1188 ◽  
Author(s):  
Ulrich M Vischer ◽  
Claes B Wollheinn

Summaryvon Willebrand factor (vWf) is released from endothelial cell storage granules after stimulation with thrombin, histamine and several other agents that induce an increase in cytosolic free calcium ([Ca2+]i). In vivo, epinephrine and the vasopressin analog DDAVP increase vWf plasma levels, although they are thought not to induce vWf release from endothelial cells in vitro. Since these agents act via a cAMP-dependent pathway in responsive cells, we examined the role of cAMP in vWf secretion from cultured human umbilical vein endothelial cells. vWf release increased by 50% in response to forskolin, which activates adenylate cyclase. The response to forskolin was much stronger when cAMP degradation was blocked with IBMX, an inhibitor of phosphodiesterases (+200%), whereas IBMX alone had no effect. vWf release could also be induced by the cAMP analogs dibutyryl-cAMP (+40%) and 8-bromo-cAMP (+25%); although their effect was weak, they clearly potentiated the response to thrombin. Epinephrine (together with IBMX) caused a small, dose-dependent increase in vWf release, maximal at 10-6 M (+50%), and also potentiated the response to thrombin. This effect is mediated by adenylate cyclase-coupled β-adrenergic receptors, since it is inhibited by propranolol and mimicked by isoproterenol. In contrast to thrombin, neither forskolin nor epinephrine caused an increase in [Ca2+]j as measured by fura-2 fluorescence. In addition, the effects of forskolin and thrombin were additive, suggesting that they act through distinct signaling pathways. We found a close correlation between cellular cAMP content and vWf release after stimulation with epinephrine and forskolin. These results demonstrate that cAMP-dependent signaling events are involved in the control of exocytosis from endothelial cells (an effect not mediated by an increase in [Ca2+]i) and provide an explanation for epinephrine-induced vWf release.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


Sign in / Sign up

Export Citation Format

Share Document