scholarly journals AtCIPK16 Mediates Salt Stress Through Phytohormones and Transcription Factors

2020 ◽  
Author(s):  
Shanika L. Amarasinghe ◽  
Wenmian Huang ◽  
Nathan S. Watson-Haigh ◽  
Matthew Gilliham ◽  
Stuart J. Roy ◽  
...  

AbstractSoil salinity causes large productivity losses for agriculture worldwide. “Next-generation crops” that can tolerate salt stress are required for the sustainability of global food production. Previous research in Arabidopsis thaliana aimed at uncovering novel factors underpinning improved plant salinity tolerance identified the protein kinase AtCIPK16. Overexpression of AtCIPK16 enhanced shoot Na+ exclusion and increased biomass in both Arabidopsis and barley. Here, a comparative transcriptomic study on Arabidopsis lines expressing AtCIPK16 was conducted in the presence and absence of salt stress, using an RNA-Seq approach, complemented by AtCIPK16 interaction and localisation studies. We are now able to provide evidence for AtCIPK16 activity in the nucleus. Moreover, the results manifest the involvement of a transcription factor, AtTZF1, phytohormones and the ability to quickly reach homeostasis as components important for improving salinity tolerance in transgenics overexpressing AtCIPK16. Furthermore, we suggest the possibility of both biotic and abiotic tolerance through AtCIPK16, and propose a model for the salt tolerance pathway elicited through AtCIPK16.

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1633
Author(s):  
Li Ren ◽  
Fangrui Li ◽  
Jing Jiang ◽  
Huiyu Li

The plant-specific transcription factors TEOSINTE BRANCHED1/CYCLO IDEA/PROLIFERATING CELL FACTOR1 (TCP) act as developmental regulators that have many roles in the growth and development processes throughout the entire life span of plants. TCP transcription factors are responsive to endogenous and environmental signals, such as salt stress. However, studies on the role of the TCP genes in salt stress response have rarely focused on woody plants, especially forest trees. In this study, the BpTCP3 gene, a CYC/TB1 subfamily member, isolated from Betula platyphylla Sukaczev, was significantly influenced by salt stress. The β-glucuronidase (GUS) staining analysis of transgenic B. platyphylla harboring the BpTCP3 promoter fused to the reporter gene GUS (pBpTCP3::GUS) further confirmed that the BpTCP3 gene acts a positive regulatory position in salt stress. Under salt stress, we found that the BpTCP3 overexpressed lines had increased relative/absolute high growth but decreased salt damage index, hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels versus wild-type (WT) plants. Conversely, the BpTCP3 suppressed lines exhibited sensitivity to salt stress. These results indicate that the BpTCP3 transcription factor improves the salt tolerance of B. platyphylla by reducing reactive oxygen species damage, which provides useful clues for the functions of the CYC/TB1 subfamily gene in the salt stress response of B. platyphylla.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


2020 ◽  
Vol 71 (18) ◽  
pp. 5438-5453
Author(s):  
Alejandra Camoirano ◽  
Agustín L Arce ◽  
Federico D Ariel ◽  
Antonela L Alem ◽  
Daniel H Gonzalez ◽  
...  

Abstract Trichomes and the cuticle are two specialized structures of the aerial epidermis that are important for plant organ development and interaction with the environment. In this study, we report that Arabidopsis thaliana plants affected in the function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15 show overbranched trichomes in leaves and stems and increased cuticle permeability. We found that TCP15 regulates the expression of MYB106, a MIXTA-like transcription factor involved in epidermal cell and cuticle development, and overexpression of MYB106 in a tcp14 tcp15 mutant reduces trichome branch number. TCP14 and TCP15 are also required for the expression of the cuticle biosynthesis genes CYP86A4, GPAT6, and CUS2, and of SHN1 and SHN2, two AP2/EREBP transcription factors required for cutin and wax biosynthesis. SHN1 and CUS2 are also targets of TCP15, indicating that class I TCPs influence cuticle formation acting at different levels, through the regulation of MIXTA-like and SHN transcription factors and of cuticle biosynthesis genes. Our study indicates that class I TCPs are coordinators of the regulatory network involved in trichome and cuticle development.


2002 ◽  
Vol 53 (11) ◽  
pp. 1243 ◽  
Author(s):  
Bernardo Murillo-Amadot ◽  
Enrique Troyo-Diéguez ◽  
Raúl López-Aguilar ◽  
Alejandro López-Cortés ◽  
Clara L. Tinoco-Ojanguri ◽  
...  

The salt tolerance of 25 cowpea genotypes (Vigna unguiculata L. Walp.) was studied during early vegetative growth. Salinity treatments were applied by irrigating with a nutrient solution containing 0, 85, and 170 mmol NaCl/L. Seedling survival decreased linearly as salinity increased, but this enabled cowpea genotypes to be ranked for salinity tolerance according to the magnitudes of slopes of regression of survival percentage on salinity. Sodium concentration was higher in roots than in shoots in all genotypes, and increased significantly in both roots and shoots as salinity increased. Chloride concentration in both roots and shoots increased with increasing salinity in all genotypes, and was higher in shoots than in roots at 85 and 170 mmol NaCl/L. In some cases, Ca, Mg, K, and P concentrations were reduced by an increase in salinity, but none of the genotypes appeared to suffer any nutrient deficiency. We observed wide differences in responses to salinity, and our results suggest that during the growth stage studied, 7 of the 25 genotppes tested could be classified as tolerant or relatively tolerant to salinity (Sonorense, CB3, CB27, Cuarenteño, CB46, Paceño, and IT82D-889).


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Annick Bertrand ◽  
Craig Gatzke ◽  
Marie Bipfubusa ◽  
Vicky Lévesque ◽  
Francois P. Chalifour ◽  
...  

Alfalfa and its rhizobial symbiont are sensitive to salinity. We compared the physiological responses of alfalfa populations inoculated with a salt-tolerant rhizobium strain, exposed to five NaCl concentrations (0, 20, 40, 80, or 160 mM NaCl). Two initial cultivars, Halo (H-TS0) and Bridgeview (B-TS0), and two populations obtained after three cycles of recurrent selection for salt tolerance (H-TS3 and B-TS3) were compared. Biomass, relative water content, carbohydrates, and amino acids concentrations in leaves and nodules were measured. The higher yield of TS3-populations than initial cultivars under salt stress showed the effectiveness of our selection method to improve salinity tolerance. Higher relative root water content in TS3 populations suggests that root osmotic adjustment is one of the mechanisms of salt tolerance. Higher concentrations of sucrose, pinitol, and amino acid in leaves and nodules under salt stress contributed to the osmotic adjustment in alfalfa. Cultivars differed in their response to recurrent selection: under a 160 mM NaCl-stress, aromatic amino acids and branched-chain amino acids (BCAAs) increased in nodules of B-ST3 as compared with B-TS0, while these accumulations were not observed in H-TS3. BCAAs are known to control bacteroid development and their accumulation under severe stress could have contributed to the high nodulation of B-TS3.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 950 ◽  
Author(s):  
Vikas Belamkar ◽  
Nathan T Weeks ◽  
Arvind K Bharti ◽  
Andrew D Farmer ◽  
Michelle A Graham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document