scholarly journals Toxoplasma GRA15 limits parasite growth in IFNγ-activated fibroblasts through TRAF ubiquitin ligases

Author(s):  
Debanjan Mukhopadhyay ◽  
Lamba Omar Sangaré ◽  
Laurence Braun ◽  
Mohamed-Ali Hakimi ◽  
Jeroen P.J. Saeij

AbstractThe protozoan parasite Toxoplasma gondii lives inside a vacuole in the host cytoplasm where it is protected from host cytoplasmic innate immune responses. However, IFNγ-dependent cell-autonomous immunity can destroy the vacuole and the parasite inside. Toxoplasma strain differences in susceptibility to human IFNγ exist but the Toxoplasma effector(s) that determine these differences are unknown. We show that in human primary fibroblasts, the polymorphic Toxoplasma secreted effector GRA15 mediates the recruitment of ubiquitin ligases, including TRAF2 and TRAF6, to the vacuole membrane, which enhances recruitment of ubiquitin receptors (p62/NDP52) and ubiquitin-like molecules (LC3B, GABARAP). This ultimately leads to lysosomal degradation of the vacuole. In murine fibroblasts, GRA15-mediated TRAF6 recruitment mediates the recruitment of immunity-related GTPases and destruction of the vacuole. Thus, we have identified how the Toxoplasma effector GRA15 affects cell-autonomous immunity in human and murine cells.

1999 ◽  
Vol 19 (8) ◽  
pp. 5339-5351 ◽  
Author(s):  
Qing Li ◽  
Chi V. Dang

ABSTRACT c-myc has been shown to regulate G1/S transition, but a role for c-myc in other phases of the cell cycle has not been identified. Exposure of cells to colcemid activates the mitotic spindle checkpoint and arrests cells transiently in metaphase. After prolonged colcemid exposure, the cells withdraw from mitosis and enter a G1-like state. In contrast to cells in G1, colcemid-arrested cells have decreased G1 cyclin-dependent kinase activity and show hypophosphorylation of the retinoblastoma protein. We have found that overexpression of c-myc causes colcemid-treated human and rodent cells to become either apoptotic or polyploid by replicating DNA without chromosomal segregation. Although c-myc-induced polyploidy is not inhibited by wild-type p53 in immortalized murine fibroblasts, overexpression of c-myc in primary fibroblasts resulted in massive apoptosis of colcemid-treated cells. We surmise that additional genes are altered in immortalized cells to suppress the apoptotic pathway and allow c-myc-overexpressing cells to progress forward in the presence of colcemid. Our results also suggest that c-myc induces DNA rereplication in this G1-like state by activating CDK2 activity. These observations indicate that activation of c-myc may contribute to the genomic instability commonly found in human cancers.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2462
Author(s):  
Xia Li ◽  
Yuhan Zhang ◽  
Yanqing Zhao ◽  
Ke Qiao ◽  
Meng Feng ◽  
...  

Autophagy, an evolutionarily conserved mechanism to remove redundant or dangerous cellular components, plays an important role in innate immunity and defense against pathogens, which, in turn, can regulate autophagy to establish infection within a host. However, for Entamoeba histolytica, an intestinal protozoan parasite causing human amoebic colitis, the interaction with the host cell autophagy mechanism has not been investigated. In this study, we found that E. histolytica peroxiredoxin (Prx), an antioxidant enzyme critical for parasite survival during the invasion of host tissues, could activate autophagy in macrophages. The formation of autophagosomes in macrophages treated with recombinant Prx of E. histolytica for 24 h was revealed by immunofluorescence and immunoblotting in RAW264.7 cells and in mice. Prx was cytotoxic for RAW264.7 macrophages after 48-h treatment, which was partly attributed to autophagy-dependent cell death. RNA interference experiments revealed that Prx induced autophagy mostly through the toll-like receptor 4 (TLR4)–TIR domain-containing adaptor-inducing interferon (TRIF) pathway. The C-terminal part of Prx comprising 100 amino acids was the key functional domain to activate autophagy. These results indicated that Prx of E. histolytica could induce autophagy and cytotoxic effects in macrophages, revealing a new pathogenic mechanism activated by E. histolytica in host cells.


2008 ◽  
Vol 414 (2) ◽  
pp. 161-175 ◽  
Author(s):  
Karen H. Ventii ◽  
Keith D. Wilkinson

Protein modification by ubiquitin and ubiquitin-like molecules is a critical regulatory process. Like most regulated protein modifications, ubiquitination is reversible. Deubiquitination, the reversal of ubiquitination, is quickly being recognized as an important regulatory strategy. Nearly one hundred human DUBs (deubiquitinating enzymes) in five different gene families oppose the action of several hundred ubiquitin ligases, suggesting that both ubiquitination and its reversal are highly regulated and specific processes. It has long been recognized that ubiquitin ligases are modular enzyme systems that often depend on scaffolds and adaptors to deliver substrates to the catalytically active macromolecular complex. Although many DUBs bind ubiquitin with reasonable affinities (in the nM to μM range), a larger number have little affinity but exhibit robust catalytic capability. Thus it is apparent that these DUBs must acquire their substrates by binding the target protein in a conjugate or by associating with other macromolecular complexes. We would then expect that a study of protein partners of DUBs would reveal a variety of substrates, scaffolds, adaptors and ubiquitin receptors. In the present review we suggest that, like ligases, much of the regulation and specificity of deubiquitination arises from the association of DUBs with these protein partners.


1998 ◽  
Vol 111 (12) ◽  
pp. 1729-1739 ◽  
Author(s):  
N. Guillen ◽  
P. Boquet ◽  
P. Sansonetti

Entamoeba histolytica is a protozoan parasite that invades human intestine leading to ulceration and destruction of tissue. Amoebic movement and phagocytosis of human cells is accompanied by characteristic changes in cell morphology. Amoebae become polarized, developing a frontal pseudopod and a well-defined rear zone of membrane accumulation designated the uroid. In motile eukaryotic cells, a phenomenon that contributes to movement is the capping of receptors at the cell surface. During the capping process, E. histolytica concentrates ligand-receptor complexes in the uroid. Interestingly, some of these surface receptors are involved in the survival of the parasite. While looking for regulators of capping and uroid formation, we identified RacG, an E. histolytica protein that is homologous to human Rac1. This protein belongs to the Rac subfamily of small GTPases implicated in interactions between the actin cytoskeleton and the membrane of mammalian cells. Cloning of the EhracG gene and analysis of the protein activity either in murine fibroblasts or in E. histolytica revealed that EhRacG induces a characteristic Rac phenotype. When expressed in amoebae, an EhRacG-V12 mutant protein not only deregulated cell polarity, but also caused a defect in cytokinesis. Analysis of the cytoskeleton in amoebae bearing this mutant revealed that F-actin concentrated at the periphery of the cell. In addition, the number and localization of uroids were modified. These results suggest a role for EhRacG in amoebic morphogenesis and cytokinesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vincent Deruelle ◽  
Stéphanie Bouillot ◽  
Viviana Job ◽  
Emmanuel Taillebourg ◽  
Marie-Odile Fauvarque ◽  
...  

AbstractPseudomonas aeruginosa can cause nosocomial infections, especially in ventilated or cystic fibrosis patients. Highly pathogenic isolates express the phospholipase ExoU, an effector of the type III secretion system that acts on plasma membrane lipids, causing membrane rupture and host cell necrosis. Here, we use a genome-wide screen to discover that ExoU requires DNAJC5, a host chaperone, for its necrotic activity. DNAJC5 is known to participate in an unconventional secretory pathway for misfolded proteins involving anterograde vesicular trafficking. We show that DNAJC5-deficient human cells, or Drosophila flies knocked-down for the DNAJC5 orthologue, are largely resistant to ExoU-dependent virulence. ExoU colocalizes with DNAJC5-positive vesicles in the host cytoplasm. DNAJC5 mutations preventing vesicle trafficking (previously identified in adult neuronal ceroid lipofuscinosis, a human congenital disease) inhibit ExoU-dependent cell lysis. Our results suggest that, once injected into the host cytoplasm, ExoU docks to DNAJC5-positive secretory vesicles to reach the plasma membrane, where it can exert its phospholipase activity


2015 ◽  
Vol 6 (8) ◽  
pp. 877-881 ◽  
Author(s):  
Patricia G. Cruz ◽  
Andrew M. Fribley ◽  
Justin R. Miller ◽  
Martha J. Larsen ◽  
Pamela J. Schultz ◽  
...  

2020 ◽  
Vol 39 (10) ◽  
Author(s):  
Debanjan Mukhopadhyay ◽  
Lamba Omar Sangaré ◽  
Laurence Braun ◽  
Mohamed‐Ali Hakimi ◽  
Jeroen PJ Saeij

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Kaitlin A. Davis ◽  
Marco Morelli ◽  
John T. Patton

ABSTRACT The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1–β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the virus to inhibit host innate immune responses is to hijack cellular cullin-RING E3 ubiquitin ligases (CRLs) and redirect their targeting activity to the degradation of cellular proteins crucial for interferon expression. This task is accomplished through the rotavirus nonstructural protein NSP1, which incorporates itself into a CRL and serves as a substrate recognition subunit. The substrate recognized by the NSP1 of many human and porcine rotaviruses is β-TrCP, a protein that regulates the transcription factor NF-κB. In this study, we show that formation of NSP1 CRLs is a highly regulated stepwise process initiated by CKII phosphorylation of the β-TrCP recognition motif in NSP1. This modification triggers recruitment of the β-TrCP substrate and induces subsequent changes in a highly conserved NSP1 RING domain that allow anchoring of the NSP1–β-TrCP complex to a cullin scaffold. IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the virus to inhibit host innate immune responses is to hijack cellular cullin-RING E3 ubiquitin ligases (CRLs) and redirect their targeting activity to the degradation of cellular proteins crucial for interferon expression. This task is accomplished through the rotavirus nonstructural protein NSP1, which incorporates itself into a CRL and serves as a substrate recognition subunit. The substrate recognized by the NSP1 of many human and porcine rotaviruses is β-TrCP, a protein that regulates the transcription factor NF-κB. In this study, we show that formation of NSP1 CRLs is a highly regulated stepwise process initiated by CKII phosphorylation of the β-TrCP recognition motif in NSP1. This modification triggers recruitment of the β-TrCP substrate and induces subsequent changes in a highly conserved NSP1 RING domain that allow anchoring of the NSP1–β-TrCP complex to a cullin scaffold.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuzhi Jia ◽  
Chunyuan Zhao ◽  
Wei Zhao

The major histocompatibility complex (MHC) class I (MHC-I) region contains a multitude of genes relevant to immune response. Multiple E3 ubiquitin ligase genes, including tripartite motif 10 (TRIM10), TRIM15, TRIM26, TRIM27, TRIM31, TRIM38, TRIM39, TRIM40, and RING finger protein 39 (RNF39), are organized in a tight cluster, and an additional two TRIM genes (namely TRIM38 and TRIM27) telomeric of the cluster within the MHC-I region. The E3 ubiquitin ligases encoded by these genes possess important roles in controlling the intensity of innate immune responses. In this review, we discuss the E3 ubiquitin ligases encoded within the MHC-I region, highlight their regulatory roles in innate immunity, and outline their potential functions in infection, inflammatory and autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document