scholarly journals In vivo discovery of RNA proximal proteins in human cells via proximity-dependent biotinylation

Author(s):  
Xianzhi Lin ◽  
Marcos A. S. Fonseca ◽  
Rosario I. Corona ◽  
Kate Lawrenson

AbstractRNA molecules function as messengers or noncoding adaptor molecules, structural components, and regulators of genome organization and gene expression. Their roles and regulation are mediated by other molecules they interact with, especially RNA binding proteins (RBPs). Here we report RNA proximity labeling (RPL), an RNA-centric method based on fusion of an endonuclease-deficient Type VI CRISPR-Cas protein (dCas13b) and engineered ascorbate peroxidase (APEX2) to discover in vivo target RNA proximal proteins (RPPs) through proximity-based biotinylation. U1 RPPs enriched by proximity-based biotinylation included both U1 snRNA canonical and noncanonical functions-related proteins. In addition, profiling of poly(A) tail proximal proteins uncovered expected categories of RBPs for poly(A) tails and also provided novel evidence for poly(A)+ RNA 5’-3’ proximity and expanded subcellular localizations. Our results suggest that RPL is a rapid approach for identifying both interacting and neighboring proteins associated with target RNA molecules in their native cellular contexts.

2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1473
Author(s):  
Mohamed Zaiou

Circular RNAs (circRNAs) are genome transcripts that are produced from back-splicing of specific regions of pre-mRNA. These single-stranded RNA molecules are widely expressed across diverse phyla and many of them are stable and evolutionary conserved between species. Growing evidence suggests that many circRNAs function as master regulators of gene expression by influencing both transcription and translation processes. Mechanistically, circRNAs are predicted to act as endogenous microRNA (miRNA) sponges, interact with functional RNA-binding proteins (RBPs), and associate with elements of the transcriptional machinery in the nucleus. Evidence is mounting that dysregulation of circRNAs is closely related to the occurrence of a range of diseases including cancer and metabolic diseases. Indeed, there are several reports implicating circRNAs in cardiovascular diseases (CVD), diabetes, hypertension, and atherosclerosis. However, there is very little research addressing the potential role of these RNA transcripts in the occurrence and development of obesity. Emerging data from in vitro and in vivo studies suggest that circRNAs are novel players in adipogenesis, white adipose browning, obesity, obesity-induced inflammation, and insulin resistance. This study explores the current state of knowledge on circRNAs regulating molecular processes associated with adipogenesis and obesity, highlights some of the challenges encountered while studying circRNAs and suggests some perspectives for future research directions in this exciting field of study.


2019 ◽  
Author(s):  
Andreas U. Müller ◽  
Marc Leibundgut ◽  
Nenad Ban ◽  
Eilika Weber-Ban

AbstractIn mycobacteria, transcriptional activator PafBC is responsible for upregulating the majority of genes induced by DNA damage. Understanding the mechanism of PafBC activation is impeded by a lack of structural information on this transcription factor that contains a widespread, but poorly understood WYL domain frequently encountered in bacterial transcription factors. Here, we determined the crystal structure ofArthrobacter aurescensPafBC. The protein consists of two modules, each harboring an N-terminal helix-turn-helix DNA binding domain followed by a central WYL and a C-terminal extension (WCX) domain. The WYL domains exhibit Sm-folds, while the WCX domains adopt ferredoxin-like folds, both characteristic for RNA binding proteins. Our results suggest a mechanism of regulation in which WYL domain-containing transcription factors may be activated by binding RNA molecules. Using anin vivomutational screen inMycobacterium smegmatis, we identify potential co-activator binding sites on PafBC.


2020 ◽  
Author(s):  
Clémentine Delan-Forino ◽  
Christos Spanos ◽  
Juri Rappsilber ◽  
David Tollervey

ABSTRACTDuring nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity was apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association showed co-enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression. We compared binding sites of TRAMP components with multiple nuclear RNA binding proteins, revealing preferential colocalization of subsets of factors. TRF5 deletion reduced Mtr4 recruitment and increased RNA abundance for mRNAs specifically showing high Trf5 binding.


2018 ◽  
Author(s):  
Tim Schneider ◽  
Lee-Hsueh Hung ◽  
Masood Aziz ◽  
Anna Wilmen ◽  
Stephanie Thaum ◽  
...  

AbstractHow multidomain RNA-binding proteins recognize their specific target sequences, based on a combinatorial code, represents a fundamental unsolved question and has not been studied systematically so far. Here we focus on a prototypical multidomain RNA-binding protein, IMP3 (also called IGF2BP3), which contains six RNA-binding domains (RBDs): four KH and two RRM domains. We have established an integrative systematic strategy, combining single-domain-resolved SELEX-seq, motif-spacing analyses, in vivo iCLIP, functional validation assays, and structural biology. This approach identifies the RNA-binding specificity and RNP topology of IMP3, involving all six RBDs and a cluster of up to five distinct and appropriately spaced CA-rich and GGC-core RNA elements, covering a >100 nucleotide-long target RNA region. Our generally applicable approach explains both specificity and flexibility of IMP3-RNA recognition, providing a paradigm for the function of multivalent interactions with multidomain RNA-binding proteins in gene regulation.


2020 ◽  
Vol 21 (13) ◽  
pp. 4684
Author(s):  
Julia Mathlin ◽  
Loredana Le Pera ◽  
Teresa Colombo

In the past few years, thorough investigation of chemical modifications operated in the cells on ribonucleic acid (RNA) molecules is gaining momentum. This new field of research has been dubbed “epitranscriptomics”, in analogy to best-known epigenomics, to stress the potential of ensembles of RNA modifications to constitute a post-transcriptional regulatory layer of gene expression orchestrated by writer, reader, and eraser RNA-binding proteins (RBPs). In fact, epitranscriptomics aims at identifying and characterizing all functionally relevant changes involving both non-substitutional chemical modifications and editing events made to the transcriptome. Indeed, several types of RNA modifications that impact gene expression have been reported so far in different species of cellular RNAs, including ribosomal RNAs, transfer RNAs, small nuclear RNAs, messenger RNAs, and long non-coding RNAs. Supporting functional relevance of this largely unknown regulatory mechanism, several human diseases have been associated directly to RNA modifications or to RBPs that may play as effectors of epitranscriptomic marks. However, an exhaustive epitranscriptome’s characterization, aimed to systematically classify all RNA modifications and clarify rules, actors, and outcomes of this promising regulatory code, is currently not available, mainly hampered by lack of suitable detecting technologies. This is an unfortunate limitation that, thanks to an unprecedented pace of technological advancements especially in the sequencing technology field, is likely to be overcome soon. Here, we review the current knowledge on epitranscriptomic marks and propose a categorization method based on the reference ribonucleotide and its rounds of modifications (“stages”) until reaching the given modified form. We believe that this classification scheme can be useful to coherently organize the expanding number of discovered RNA modifications.


2020 ◽  
Author(s):  
Kotaro Chihara ◽  
Lars Barquist ◽  
Kenichi Takasugi ◽  
Naohiro Noda ◽  
Satoshi Tsuneda

ABSTRACTPosttranscriptional regulation of gene expression in bacteria is performed by a complex and hierarchical signaling cascade. Pseudomonas aeruginosa harbors two redundant RNA-binding proteins RsmA/RsmN (RsmA/N), which play a critical role in balancing acute and chronic infections. However, in vivo binding sites on target transcripts and the overall impact on the physiology remains unclear. In this study, we applied in vivo UV crosslinking immunoprecipitation followed by RNA-sequencing (UV CLIP-seq) to detect RsmA/N binding sites at single-nucleotide resolution and mapped more than 500 peaks to approximately 400 genes directly bound by RsmA/N in P. aeruginosa. This also demonstrated the ANGGA sequence in apical loops skewed towards 5’UTRs as a consensus motif for RsmA/N binding. Genetic analysis combined with CLIP-seq results identified previously unrecognized RsmA/N targets involved in LPS modification. Moreover, the small non-coding RNAs RsmY/RsmZ, which sequester RsmA/N away from target mRNAs, are positively regulated by the RsmA/N-mediated translational repression of hptB, encoding a histidine phosphotransfer protein, and cafA, encoding a cytoplasmic axial filament protein, thus providing a possible mechanistic explanation for homeostasis of the Rsm system. Our findings present the global RsmA/N-RNA interaction network that exerts pleiotropic effects on gene expression in P. aeruginosa.IMPORTANCEThe ubiquitous bacterium Pseudomonas aeruginosa is notorious as an opportunistic pathogen causing life-threatening acute and chronic infections in immunocompromised patients. P. aeruginosa infection processes are governed by two major gene regulatory systems, namely, the GacA/GacS (GacAS) two-component system and the RNA-binding proteins RsmA/RsmN (RsmA/N). RsmA/N basically function as a translational repressor or activator directly by competing with the ribosome. In this study, we identified hundreds of RsmA/N regulatory target RNAs and the consensus motifs for RsmA/N bindings by UV crosslinking in vivo. Moreover, our CLIP-seq revealed that RsmA/N posttranscriptionally regulate cell wall organization and exert feedback control on GacAS-RsmA/N systems. Many genes including small regulatory RNAs identified in this study are attractive targets for further elucidating the regulatory mechanisms of RsmA/N in P. aeruginosa.


2020 ◽  
Author(s):  
M. Haley Licon ◽  
Phillip A. Yates

ABSTRACTThe ability to modulate gene expression in response to changes in the host environment is essential for survival of the kinetoplastid parasite Leishmania. Unlike most eukaryotes, gene expression in kinetoplastids is predominately regulated post-transcriptionally. Consequently, RNA-binding proteins (RBPs) and mRNA-encoded sequence elements serve as primary determinants of gene regulation in these organisms; however, few have been ascribed roles in specific stress-response pathways. Leishmania lack the capacity for de novo purine synthesis and must scavenge these essential nutrients from the host. Leishmania have evolved a robust stress response to withstand sustained periods of purine scarcity during their lifecycle. The purine nucleobase transporter, LdNT3, is among the most substantially upregulated proteins in purine-starved L. donovani. Here we report that the post-translational stability of the LdNT3 protein is unchanged in response to purine starvation. Instead, LdNT3 upregulation is primarily mediated by a 33 nucleotide (nt) sequence in the LdNT3 mRNA 3’-untranslated region that is predicted to adopt a stem-loop structure. While this sequence is highly conserved within the mRNAs of orthologous transporters in multiple kinetoplastid species, putative stem-loops from L. donovani and Trypanosoma brucei nucleobase transporter mRNAs are not functionally interchangeable for purine-responsive regulation. Through mutational analysis of the element, we demonstrate that species specificity is attributable to just three variant bases within the predicted loop. Finally, we provide evidence that the abundance of the trans-acting factor that binds the LdNT3 stem-loop in vivo is substantially higher than required for regulation of LdNT3 alone, implying a potential role in regulating other purine-responsive genes.


2020 ◽  
Vol 295 (25) ◽  
pp. 8449-8459 ◽  
Author(s):  
M. Haley Licon ◽  
Phillip A. Yates

The ability to modulate gene expression in response to changes in the host environment is essential for survival of the kinetoplastid parasite Leishmania. Unlike most eukaryotes, gene expression in kinetoplastids is predominately regulated posttranscriptionally. Consequently, RNA-binding proteins and mRNA-encoded sequence elements serve as primary determinants of gene regulation in these organisms; however, few have defined roles in specific stress response pathways. Leishmania species cannot synthesize purines de novo and must scavenge these essential nutrients from the host. Leishmania have evolved a robust stress response to withstand sustained periods of purine scarcity during their life cycle. The purine nucleobase transporter LdNT3 is among the most substantially up-regulated proteins in purine-starved Leishmania donovani parasites. Here we report that the posttranslational stability of the LdNT3 protein is unchanged in response to purine starvation. Instead, LdNT3 up-regulation is primarily mediated by a 33-nucleotide-long sequence in the LdNT3 mRNA 3′ UTR that is predicted to adopt a stem–loop structure. Although this sequence is highly conserved within the mRNAs of orthologous transporters in multiple kinetoplastid species, putative stem–loops from L. donovani and Trypanosoma brucei nucleobase transporter mRNAs were not functionally interchangeable for purine-responsive regulation. Through mutational analysis of the element, we demonstrate that species specificity is attributable to just three variant bases within the predicted loop. Finally, we provide evidence that the abundance of the trans-acting factor that binds the LdNT3 stem–loop in vivo is substantially higher than required for regulation of LdNT3 alone, implying a potential role in regulating other purine-responsive genes.


2021 ◽  
Author(s):  
Sepideh Tavakoli ◽  
Mohammad Nabizadehmashhadtoroghi ◽  
Amr Makhamreh ◽  
Howard Gamper ◽  
Neda Rezapour ◽  
...  

Enzyme-mediated chemical modifications to mRNAs have the potential to fine-tune gene expression in response to environmental stimuli. Notably, pseudouridine-modified mRNAs are more resistant to RNase-mediated degradation, more responsive to cellular stress, and have the potential to modulate immunogenicity and enhance translation in vivo. However, the precise biological functions of pseudouridine modification on mRNAs remain unclear due to the lack of sensitive and accurate tools for mapping. We developed a semi-quantitative method for mapping pseudouridylated sites with high confidence directly on mammalian mRNA transcripts via direct RNA, long-read nanopore sequencing. By analysis of a modification-free transcriptome, we demonstrate that the depth of coverage and intrinsic errors associated with specific k-mer sequences are critical parameters for accurate base-calling. We adjust these parameters for high-confidence U-to-C base-calling errors that occur at pseudouridylated sites, which are benchmarked against sites that were identified previously by biochemical methods. We also uncovered new pseudouridylated sites, many of which fall on genes that encode RNA binding proteins and on uridine-rich k-mers. Sites identified by U-to-C base calling error were verified using 1000mer synthetic RNA controls bearing a single pseudouridine in the center position, demonstrating that 1. the U-to-C base-calling error occurs at the site of pseudouridylation, and 2. the basecalling error is systematically under-calling the pseudouridylated sites. High-occupancy sites with >40% U-to-C basecalling error are classified as sites of hyper modification type I, whereas genes with more than one site of pseudouridylation are classified as having type II hyper modification which is confirmed by single-molecule analysis. We report the discovery of mRNAs with up to 7 unique sites of pseudouridine modification. Here we establish an innovative pipeline for direct identification, quantification, and detection of pseudouridine modifications and type I/II hypermodifications on native RNA molecules using long-read sequencing without resorting to RNA amplification, chemical reactions on RNA, enzyme-based replication, or DNA sequencing steps.


Sign in / Sign up

Export Citation Format

Share Document