scholarly journals Non-CG methylation is superior to CG methylation in genome regulation

2020 ◽  
Author(s):  
Katherine Domb ◽  
Aviva Katz ◽  
Rafael Yaari ◽  
Efrat Kaisler ◽  
Vu Hoang Nguyen ◽  
...  

AbstractDNA methylation in plants occurs in CG, CHG, and CHH sites. While depletion of CG methylation in transposons is associated with ample transcriptional activation, it was mainly studied in species with limited non-CG methylation that is linked to CG methylation. Here we profiled transcription in the moss plant, Physcomitrella patens, that has robust non-CG methylation with similar symmetrical CG and CHG methylation levels. Separated contextual methylation mechanisms in Physcomitrella patens enabled generation of numerous context-specific hypomethylated mutants. Our transcriptome data show that specific elimination of CG methylation is fully complemented by non-CG methylation. Conversely, exclusive removal of non-CG methylation massively dysregulated genes and transposons. Moreover, CHG methylation silenced transposons stronger than CG methylation. Lastly, we found non-CG methylation as crucial for silencing CG-depleted transposons. These results demonstrate the potency of non-CG methylation in genome regulation and suggest that it evolved due to moderate silencing and/or rapid mutability of methylated CGs.

2020 ◽  
Vol 117 (52) ◽  
pp. 33700-33710
Author(s):  
Katherine Domb ◽  
Aviva Katz ◽  
Keith D. Harris ◽  
Rafael Yaari ◽  
Efrat Kaisler ◽  
...  

Cytosine (DNA) methylation in plants regulates the expression of genes and transposons. While methylation in plant genomes occurs at CG, CHG, and CHH sequence contexts, the comparative roles of the individual methylation contexts remain elusive. Here, we present Physcomitrella patens as the second plant system, besides Arabidopsis thaliana, with viable mutants with an essentially complete loss of methylation in the CG and non-CG contexts. In contrast to A. thaliana, P. patens has more robust CHH methylation, similar CG and CHG methylation levels, and minimal cross-talk between CG and non-CG methylation, making it possible to study context-specific effects independently. Our data found CHH methylation to act in redundancy with symmetric methylation in silencing transposons and to regulate the expression of CG/CHG-depleted transposons. Specific elimination of CG methylation did not dysregulate transposons or genes. In contrast, exclusive removal of non-CG methylation massively up-regulated transposons and genes. In addition, comparing two exclusively but equally CG- or CHG-methylated genomes, we show that CHG methylation acts as a greater transcriptional regulator than CG methylation. These results disentangle the transcriptional roles of CG and non-CG, as well as symmetric and asymmetric methylation in a plant genome, and point to the crucial role of non-CG methylation in genome regulation.


2019 ◽  
Author(s):  
Zeineb Achour ◽  
Johann Joets ◽  
Martine Leguilloux ◽  
Hélène Sellier ◽  
Jean-Philippe Pichon ◽  
...  

ABSTRACTCharacterizing the molecular processes developed by plants to respond to environmental cues is a major task to better understand local adaptation. DNA methylation is a chromatin mark involved in the transcriptional silencing of transposable elements (TEs) and gene expression regulation. While the molecular bases of DNA methylation regulation are now well described, involvement of DNA methylation in plant response to environmental cues remains poorly characterized. Here, using the TE-rich maize genome and analyzing methylome response to prolonged cold at the chromosome and feature scales, we investigate how genomic architecture affects methylome response to stress in a cold-sensitive genotype. Interestingly, we show that cold stress induces a genome-wide methylation increase through the hypermethylation of TE sequences and centromeres. Our work highlights a cytosine context-specific response of TE methylation that depends on TE types, chromosomal location and proximity to genes. The patterns observed can be explained by the parallel transcriptional activation of multiple DNA methylation pathways that methylate TEs in the various chromatin locations where they reside. Our results open new insights into the possible role of genome-wide DNA methylation in phenotypic response to stress.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 877 ◽  
Author(s):  
Wenqiu Lin ◽  
Xi’ou Xiao ◽  
Hongna Zhang ◽  
Yunhe Li ◽  
Shenghui Liu ◽  
...  

DNA methylation changes can occur in some loci during callus culture, resulting in somaclonal variations (SVs). In the present study, we applied whole genome bisulfite sequencing to analyze context-specific DNA methylation changes in the pineapple genome between the cutting seedings and 5 SV plants. In general, SV plants exhibited methylation patterns analogous to those of cutting seedlings (CK). A total of 27.98% of the genomic cytosines of CK were methylcytosines, which was higher than that of 5 SV plants. Moreover, mCG and mCHG was hypermethylated, whereas mCHH was hypomethylated among the 5 SV plants genomic when compared with the CK. Most of the variation of DNA methylation was distributed in gene bodies, thus suggesting that phenotypic differences are probably perturbed by genes methylated from callus culture. In addition, the methylated genes were highly enriched for the Gene Ontology (GO) categories of binding and catalytic activity, cell part and organelle, cellular process, abiotic stimulus, and DNA modification. These results suggest that methylation mediates these pathways in the callus culture of pineapple. The results also suggested that the callus culture induced DNA methylation may result in the SV.


2020 ◽  
Vol 21 (9) ◽  
pp. 3223 ◽  
Author(s):  
Olga A. Efimova ◽  
Alla S. Koltsova ◽  
Mikhail I. Krapivin ◽  
Andrei V. Tikhonov ◽  
Anna A. Pendina

Convincing evidence accumulated over the last decades demonstrates the crucial role of epigenetic modifications for mammalian genome regulation and its flexibility. DNA methylation and demethylation is a key mechanism of genome programming and reprogramming. During ontogenesis, the DNA methylome undergoes both programmed changes and those induced by environmental and endogenous factors. The former enable accurate activation of developmental programs; the latter drive epigenetic responses to factors that directly or indirectly affect epigenetic biochemistry leading to alterations in genome regulation and mediating organism response to environmental transformations. Adverse environmental exposure can induce aberrant DNA methylation changes conducive to genetic dysfunction and, eventually, various pathologies. In recent years, evidence was derived that apart from 5-methylcytosine, the DNA methylation/demethylation cycle includes three other oxidative derivatives of cytosine—5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine. 5hmC is a predominantly stable form and serves as both an intermediate product of active DNA demethylation and an essential hallmark of epigenetic gene regulation. This makes 5hmC a potential contributor to epigenetically mediated responses to environmental factors. In this state-of-the-art review, we consolidate the latest findings on environmentally induced adverse effects on 5hmC patterns in mammalian genomes. Types of environmental exposure under consideration include hypnotic drugs and medicines (i.e., phenobarbital, diethylstilbestrol, cocaine, methamphetamine, ethanol, dimethyl sulfoxide), as well as anthropogenic pollutants (i.e., heavy metals, particulate air pollution, bisphenol A, hydroquinone, and pentachlorophenol metabolites). We put a special focus on the discussion of molecular mechanisms underlying environmentally induced alterations in DNA hydroxymethylation patterns and their impact on genetic dysfunction. We conclude that DNA hydroxymethylation is a sensitive biosensor for many harmful environmental factors each of which specifically targets 5hmC in different organs, cell types, and DNA sequences and induces its changes through a specific metabolic pathway. The associated transcriptional changes suggest that environmentally induced 5hmC alterations play a role in epigenetically mediated genome flexibility. We believe that knowledge accumulated in this review together with further studies will provide a solid basis for new approaches to epigenetic therapy and chemoprevention of environmentally induced epigenetic toxicity involving 5hmC patterns.


2019 ◽  
Vol 116 (14) ◽  
pp. 6938-6943 ◽  
Author(s):  
Alain Pacis ◽  
Florence Mailhot-Léonard ◽  
Ludovic Tailleux ◽  
Haley E. Randolph ◽  
Vania Yotova ◽  
...  

DNA methylation is considered to be a relatively stable epigenetic mark. However, a growing body of evidence indicates that DNA methylation levels can change rapidly; for example, in innate immune cells facing an infectious agent. Nevertheless, the causal relationship between changes in DNA methylation and gene expression during infection remains to be elucidated. Here, we generated time-course data on DNA methylation, gene expression, and chromatin accessibility patterns during infection of human dendritic cells withMycobacterium tuberculosis. We found that the immune response to infection is accompanied by active demethylation of thousands of CpG sites overlapping distal enhancer elements. However, virtually all changes in gene expression in response to infection occur before detectable changes in DNA methylation, indicating that the observed losses in methylation are a downstream consequence of transcriptional activation. Footprinting analysis revealed that immune-related transcription factors (TFs), such as NF-κB/Rel, are recruited to enhancer elements before the observed losses in methylation, suggesting that DNA demethylation is mediated by TF binding to cis-acting elements. Collectively, our results show that DNA demethylation plays a limited role to the establishment of the core regulatory program engaged upon infection.


2009 ◽  
Vol 106 (5) ◽  
pp. 1660-1665 ◽  
Author(s):  
K. Shibuya ◽  
S. Fukushima ◽  
H. Takatsuji

2006 ◽  
Vol 70 (3) ◽  
pp. 830-856 ◽  
Author(s):  
Josep Casadesús ◽  
David Low

SUMMARY Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions.


2010 ◽  
Vol 109 (3) ◽  
pp. 927-933 ◽  
Author(s):  
Adam G. Evertts ◽  
Barry M. Zee ◽  
Benjamin A. Garcia

Epigenetics is increasingly being recognized as a central component of physiological processes as diverse as obesity and circadian rhythms. Primarily acting through DNA methylation and histone posttranslational modifications, epigenetic pathways enable both short- and long-term transcriptional activation and silencing, independently of the underlying genetic sequence. To more quantitatively study the molecular basis of epigenetic regulation in physiological processes, the present review informs the latest techniques to identify and compare novel DNA methylation marks and combinatorial histone modifications across different experimental conditions, and to localize both DNA methylation and histone modifications over specific genomic regions.


2010 ◽  
Vol 207 (9) ◽  
pp. 1939-1950 ◽  
Author(s):  
Anne Y. Lai ◽  
Mehrnaz Fatemi ◽  
Archana Dhasarathy ◽  
Christine Malone ◽  
Steve E. Sobol ◽  
...  

Aberrant DNA methylation commonly occurs in cancer cells where it has been implicated in the epigenetic silencing of tumor suppressor genes. Additional roles for DNA methylation, such as transcriptional activation, have been predicted but have yet to be clearly demonstrated. The BCL6 oncogene is implicated in the pathogenesis of germinal center–derived B cell lymphomas. We demonstrate that the intragenic CpG islands within the first intron of the human BCL6 locus were hypermethylated in lymphoma cells that expressed high amounts of BCL6 messenger RNA (mRNA). Inhibition of DNA methyltransferases decreased BCL6 mRNA abundance, suggesting a role for these methylated CpGs in positively regulating BCL6 transcription. The enhancer-blocking transcription factor CTCF bound to this intronic region in a methylation-sensitive manner. Depletion of CTCF by short hairpin RNA in neoplastic plasma cells that do not express BCL6 resulted in up-regulation of BCL6 transcription. These data indicate that BCL6 expression is maintained during lymphomagenesis in part through DNA methylation that prevents CTCF-mediated silencing.


Plant Direct ◽  
2019 ◽  
Vol 3 (9) ◽  
Author(s):  
Juexin Wang ◽  
Md Shakhawat Hossain ◽  
Zhen Lyu ◽  
Jeremy Schmutz ◽  
Gary Stacey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document