scholarly journals Mutagenic effectiveness and efficiency of gamma rays and sodium azide in M2 generation of Cowpea [Vigna unguiculata (L.) Walp.]

2020 ◽  
Author(s):  
Aamir Raina ◽  
Samiullah Khan

AbstractLegumes play a pivotal role in combating the chronic hunger and malnutrition in the developing nations and are also ideal crops to achieve global food and nutrition security. In the era of climate change, erratic rainfalls, depleting arable land and water resource, feeding the rapidly growing population is a challenging task. Among breeding programs for crop improvement, induced mutagenesis has proven to be the viable, effective, robust and coherent tool to facilitate the process of creating varieties with improved yield. Like most other pulses, cowpea is a self pollinated, nutritious, versatile and widely adapted grain legume, but harbour a little accessible genetic variability. Lack of sufficient genetic variability and small size of flowers, traditional plant breeding methods are not enough to meet the demands of improvement of cowpea. Hence, induced mutagenesis was employed to induce significant genetic variability across a range of agro-economical traits in two cowpea varieties Gomati VU-89 and Pusa-578 from M1 to M4 generations. The success of induced mutagenesis largely depends on the selection of appropriate mutagen, its dose, effectiveness and efficiency. Hence present study was conduct to assess the effectiveness and efficiency of single and combined doses of sodium azide and gamma rays to set an appropriate protocol for induced mutagenesis experimentation in cowpea.

2014 ◽  
Vol 12 ◽  
pp. 1-4 ◽  
Author(s):  
L. Mullainathan ◽  
S. Umavathi

The traditional varieties of chick pea have low potentiality and restricted variability with respect to economic characters. Broadening the genetic base for crop improvement can be quickly achieved through induced mutagenesis. The present study was undertaken in order to comparing the effectiveness and efficiency of mutagens on Cicer arietinum. In this regard, Co – 4 variety of chick pea was subjected to different dose/concentration of Gamma rays (20, 30, 40, 50 and 60 kR) and Ethyl Methane Sulphonate (10, 20, 30, 40 and 50 mM) for inducing mutation. Mutagenic effectiveness and efficiency was calculated based on biological damage in M1 and chlorophyll mutations in M2. The results indicated that, mutagenic effectiveness increased with the increase in dose/concentration of mutagen. Intermediate treatments in general were found more efficient in causing less biological damage and inducing maximum amount of mutations. It shows that the chemical mutagens are more effective and efficient than physical mutagen for inducing mutation in Chick pea


Author(s):  
Roshan Jahan ◽  
Saima Malik ◽  
Shazia Bi Ansari ◽  
Samiullah Khan

Background: Linseed is one of the most important medicinal plants grown for its various health benefits. The seeds of linseed contain a good and essential fatty acid profile that is omega-3 fatty acid/Alpha linolenic acid. It helps in the prevention of various disease including inflammation, cardiovascular problems, cancer, diabetes etc. Induced mutagenesis is an easy and cost effective technique to induce desired genetic variability, which either does not occur naturally or is not accessible to plant breeders. Genetic variability is enhanced by the influence of various chemical or physical mutagens. The usefulness of any mutagen relies not only on its efficiency but also on its effectiveness. Methods: Dry and healthy seeds of linseed (var. Padmini and IC0096650) were treated with different doses of gamma rays and sodium azide. The experiment was conducted during Rabi season of November 2016-March 2017. The selection of optimum doses of mutagens through the determination of LD50 values has been calculated on the basis of the seed germination as well as plant survival. Result: The present investigation reveals genotypic response of two linseed varieties towards different doses of gamma rays and sodium azide. Variety IC0096650 exhibited higher degree of sensitivity than variety Padmini with respect to the mutagens used. Results showed that 200Gy dose of gamma rays and 0.4% dose of sodium azide was the maximum non-lethal strength of the respective mutagen for the induction of the mutation in linseed genotypes.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
YASIN JESHIMA KHAN ◽  
HUSNARA Tyagi ◽  
Anil kumar Singh ◽  
Santosh kumar. Magadum

Plants respond through a cascade of reactions resulting in varied cellular environment leading to alterations in the patterns of protein expression resulting in phonotypic changes. Single cell genomics and global proteomics came out to be powerful tools and efficient techniques in studying stress tolerant plants. Non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. Small ncRNAs play a vital role in post transcriptional gene regulation by either translational repression or by inducing mRNA cleavage. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs too have a similar structure, function, and biogenesis like miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences.In this review, we focus on the involvement of ncRNAs in comabting abiotic stresses of soybean. This review emphasis on previously known miRNAs as they play important role in several abiotic stresses like drought, salinity, chilling and heat stress by their diverse roles in mediating biological processes like gene expression, chromatin formation, defense of genome against invading viruses. This review attempts to elucidate the various kinds of non-coding RNAs explored, their discovery, biogenesis, functions, and response for different type of abiotic stresses and future aspects for crop improvement in the context of soybean, a representative grain legume.


2017 ◽  
Vol 4 (04) ◽  
Author(s):  
ANURADHA PATEL ◽  
POONAM VERMA ◽  
SHARDA CHOUDHARY ◽  
ARVIND KUMAR VERMA

Fenugreek (Trigonella foenum-graecumL.) is an annual crop, mainly used as a spiceand leafy vegetable crop in many parts of the world. Classical breeding in fenugreek is restricted due to its low genetic variability and small flower size which hamper manual emasculation and pollination. Mutation breeding is an effective way to enrich genetic variability in crop plants. An experiment was conducted to determine the lethal dose of the physical mutagen gamma rays in fenugreek. The dry seeds of fenugreek were exposed to different doses of gamma rays i.e. 150Gy, 200Gy, 250Gy, 300Gy and 350Gy. These irradiated seeds were sown in the Petri plates with non-irradiated seeds (control). As the dose of gamma rays increased, there was a decrease in germination percentage, seedling survival, root length, shoot length and vigour index. Among five doses of gamma rays, the maximum seed germination was observed at lowest dose 150Gy (93%), followed by 200Gy (83%), 250Gy (76%), 300Gy (76%) and 350Gy (64%). The seedling survival was decreased from 90% (in control) to 56% in 350Gy dose of gamma rays. The gamma rays dose of 150Gy gave stimulatory effect on seedlings growth. The growth parameters were dose dependent, as the dose of gamma rays increased from 200Gy to 350Gy. The gamma rays dose of 350Gy showed 64% seeds germination and 56% of seedlings survival. Therefore, it is concluded that the LD50 dose for fenugreek is close to 350Gy. This information would be highly useful for initiating mutation breeding programme in fenugreek


2021 ◽  
Vol 171 ◽  
pp. 109640
Author(s):  
Vijayakumar Eswaramoorthy ◽  
Thangaraj Kandasamy ◽  
Kalaimagal Thiyagarajan ◽  
Chockalingam Vanniarajan ◽  
Souframanien Jegadeesan

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 991
Author(s):  
Ana Maria Figueira Gomes ◽  
David Draper ◽  
Nascimento Nhantumbo ◽  
Rafael Massinga ◽  
José C. Ramalho ◽  
...  

Cowpea (Vigna unguiculata) is a neglected crop native to Africa, with an outstanding potential to contribute to the major challenges in food and nutrition security, as well as in agricultural sustainability. Two major issues regarding cowpea research have been highlighted in recent years—the establishment of core collections and the characterization of landraces—as crucial to the implementation of environmentally resilient and nutrition-sensitive production systems. In this work, we have collected, mapped, and characterized the morphological attributes of 61 cowpea genotypes, from 10 landraces spanning across six agro-ecological zones and three provinces in Mozambique. Our results reveal that local landraces retain a high level of morphological diversity without a specific geographical pattern, suggesting the existence of gene flow. Nevertheless, accessions from one landrace, i.e., Maringué, seem to be the most promising in terms of yield and nutrition-related parameters, and could therefore be integrated into the ongoing conservation and breeding efforts in the region towards the production of elite varieties of cowpea.


Genetics ◽  
1993 ◽  
Vol 133 (3) ◽  
pp. 489-498 ◽  
Author(s):  
M Heude ◽  
F Fabre

Abstract It has long been known that diploid strains of yeast are more resistant to gamma-rays than haploid cells, and that this is in part due to heterozygosity at the mating type (MAT) locus. It is shown here that the genetic control exerted by the MAT genes on DNA repair involves the a1 and alpha 2 genes, in a RME1-independent way. In rad18 diploids, affected in the error-prone repair, the a/alpha effects are of a very large amplitude, after both UV and gamma-rays, and also depends on a1 and alpha 2. The coexpression of a and alpha in rad18 haploids suppresses the sensitivity of a subpopulation corresponding to the G2 phase cells. Related to this, the coexpression of a and alpha in RAD+ haploids depresses UV-induced mutagenesis in G2 cells. For srs2 null diploids, also affected in the error-prone repair pathway, we show that their G1 UV sensitivity, likely due to lethal recombination events, is partly suppressed by MAT homozygosity. Taken together, these results led to the proposal that a1-alpha 2 promotes a channeling of some DNA structures from the mutagenic into the recombinational repair process.


Sign in / Sign up

Export Citation Format

Share Document