Essential roles of plexin-B3+ oligodendrocyte precursor cells in the pathogenesis of Alzheimer’s disease

2020 ◽  
Author(s):  
Naomi Nihonmatsu-Kikuchi ◽  
Xiu-Jun Yu ◽  
Yoshiki Matsuda ◽  
Nobuyuki Ozawa ◽  
Taeko Ito ◽  
...  

AbstractThe roles played by oligodendrocyte (OL) lineage cells, the largest glial population in the adult CNS, in the pathogenesis of Alzheimer’s disease (AD) remain elusive. Here, we show a newly developed culture method for adult OL progenitor cells (aOPCs) and identify novel plexin-B3-expressing (plexin-B3+) aOPCs as potential amyloid β peptides (Aβ)-secreting cells. Fibroblast growth factor 2 (FGF2) promotes the survival and proliferation of aOPCs in a serum-free defined medium. Although the whole expression profiles of the expanded aOPCs closely resemble those of in vivo OPCs, we found a subpopulation (up to 5%) of plexin-B3+/olig2+ aOPCs in the cultures growing in FGF2. FGF2 withdrawal decreased NG2+, but increased plexin-B3+ aOPCs with increased APP expression, Aβ1-40, −42 secretions and Aβ1-42/total Aβ ratios in association with cored senile plaque-like morphological changes. In vivo, plexin-B3+ aOPCs are distributed throughout the adult brain, although less densely so than NG2+ aOPCs. Spreading depolarization, a type of brain injury, induced unique delayed cortical plexin-B3+ aOPC gliosis in the ipsilateral, but not in the contralateral, remote cortex. In AD brains, virtually all senile plaques in the cortex were immunostained with plexin-B3 antibodies and the levels of cortical plexin-B3 expression increased significantly in the Salcosyl-soluble fractions. These findings suggest that plexin-B3+ aOPCs play important roles in the pathogenesis of AD most likely as a natural Aβ source.

Author(s):  
Kie Honjo ◽  
Sandra E. Black ◽  
Nicolaas P. L. G. Verhoeff

Alzheimer's disease (AD), considered the commonest neurodegenerative cause of dementia, is associated with hallmark pathologies including extracellular amyloid-β protein (Aβ) deposition in extracellular senile plaques and vessels, and intraneuronal tau deposition as neurofibrillary tangles. Although AD is usually categorized as neurodegeneration distinct from cerebrovascular disease (CVD), studies have shown strong links between AD and CVD. There is evidence that vascular risk factors and CVD may accelerate Aβ 40-42 production/ aggregation/deposition and contribute to the pathology and symptomatology of AD. Aβ deposited along vessels also causes cerebral amyloid angiopathy. Amyloid imaging allowsin vivodetection of AD pathology, opening the way for prevention and early treatment, if disease-modifying therapies in the pipeline show safety and efficacy. In this review, we review the role of vascular factors and Aβ, underlining that vascular risk factor management may be important for AD prevention and treatment.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Hao Huang ◽  
Peipei Yan ◽  
Taoping Sun ◽  
Xiaoxing Mo ◽  
Jiawei Yin ◽  
...  

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, which is characterized by extracellular senile plaque deposits, intracellular neurofibrillary tangles, and neuronal apoptosis. Amyloid-β (Aβ) plays a critical role in AD that may cause oxidative stress and downregulation of CREB/BDNF signaling. Anti-Aβ effect has been discussed as a potential therapeutic strategy for AD. This study aimed to identify the amelioration of procyanidins extracted from lotus seedpod (LSPC) on Aβ-induced damage with associated pathways for AD treatment. Rat pheochromocytoma (PC12) cells incubated with Aβ25–35 serve as an Aβ damage model to evaluate the effect of LSPC in vitro. Our findings illustrated that LSPC maintained the cellular morphology from deformation and reduced apoptosis rates of cells induced by Aβ25–35. The mechanisms of LSPC to protect cells from Aβ-induced damage were based on its regulation of oxidation index and activation of CREB/BDNF signaling, including brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP-responsive element-binding (CREB), protein kinase B (also known as AKT), and the extracellular signal-regulated kinase (ERK). Of note, by high-performance liquid chromatography-tandem mass spectroscopy (LC-MS/MS), several metabolites were detected to accumulate in vivo, part of which could take primary responsibility for the amelioration of Aβ-induced damage on PC12 cells. Taken together, our research elucidated the effect of LSPC on neuroprotection through anti-Aβ, indicating it as a potential pretreatment for Alzheimer’s disease.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2020 ◽  
Vol 20 (9) ◽  
pp. 770-781 ◽  
Author(s):  
Poornima Sharma ◽  
Anjali Sharma ◽  
Faizana Fayaz ◽  
Sharad Wakode ◽  
Faheem H. Pottoo

Alzheimer’s disease (AD) is the most prevalent and severe neurodegenerative disease affecting more than 0.024 billion people globally, more common in women as compared to men. Senile plaques and amyloid deposition are among the main causes of AD. Amyloid deposition is considered as a central event which induces the link between the production of β amyloid and vascular changes. Presence of numerous biomarkers such as cerebral amyloid angiopathy, microvascular changes, senile plaques, changes in white matter, granulovascular degeneration specifies the manifestation of AD while an aggregation of tau protein is considered as a primary marker of AD. Likewise, microvascular changes, activation of microglia (immune defense system of CNS), amyloid-beta aggregation, senile plaque and many more biomarkers are nearly found in all Alzheimer’s patients. It was seen that 70% of Alzheimer’s cases occur due to genetic factors. It has been reported in various studies that apolipoprotein E(APOE) mainly APOE4 is one of the major risk factors for the later onset of AD. Several pathological changes also occur in the white matter which include dilation of the perivascular space, loss of axons, reactive astrocytosis, oligodendrocytes and failure to drain interstitial fluid. In this review, we aim to highlight the various biological signatures associated with the AD which may further help in discovering multitargeting drug therapy.


2021 ◽  
pp. 1-22
Author(s):  
Mariana Van Zeller ◽  
Diogo M. Dias ◽  
Ana M. Sebastião ◽  
Cláudia A. Valente

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease commonly diagnosed among the elderly population. AD is characterized by the loss of synaptic connections, neuronal death, and progressive cognitive impairment, attributed to the extracellular accumulation of senile plaques, composed by insoluble aggregates of amyloid-β (Aβ) peptides, and to the intraneuronal formation of neurofibrillary tangles shaped by hyperphosphorylated filaments of the microtubule-associated protein tau. However, evidence showed that chronic inflammatory responses, with long-lasting exacerbated release of proinflammatory cytokines by reactive glial cells, contribute to the pathophysiology of the disease. NLRP3 inflammasome (NLRP3), a cytosolic multiprotein complex sensor of a wide range of stimuli, was implicated in multiple neurological diseases, including AD. Herein, we review the most recent findings regarding the involvement of NLRP3 in the pathogenesis of AD. We address the mechanisms of NLRP3 priming and activation in glial cells by Aβ species and the potential role of neurofibrillary tangles and extracellular vesicles in disease progression. Neuronal death by NLRP3-mediated pyroptosis, driven by the interneuronal tau propagation, is also discussed. We present considerable evidence to claim that NLRP3 inhibition, is undoubtfully a potential therapeutic strategy for AD.


2021 ◽  
Vol 22 (22) ◽  
pp. 12181
Author(s):  
Guido Santos ◽  
Mario Díaz

Alzheimer’s disease (AD) is a neurodegenerative disease caused by abnormal functioning of critical physiological processes in nerve cells and aberrant accumulation of protein aggregates in the brain. The initial cause remains elusive—the only unquestionable risk factor for the most frequent variant of the disease is age. Lipid rafts are microdomains present in nerve cell membranes and they are known to play a significant role in the generation of hallmark proteinopathies associated to AD, namely senile plaques, formed by aggregates of amyloid β peptides. Recent studies have demonstrated that human brain cortex lipid rafts are altered during early neuropathological phases of AD as defined by Braak and Braak staging. The lipid composition and physical properties of these domains appear altered even before clinical symptoms are detected. Here, we use a coarse grain molecular dynamics mathematical model to predict the dimensional evolution of these domains using the experimental data reported by our group in human frontal cortex. The model predicts significant size and frequency changes which are detectable at the earliest neuropathological stage (ADI/II) of Alzheimer’s disease. Simulations reveal a lower number and a larger size in lipid rafts from ADV/VI, the most advanced stage of AD. Paralleling these changes, the predictions also indicate that non-rafts domains undergo simultaneous alterations in membrane peroxidability, which support a link between oxidative stress and AD progression. These synergistic changes in lipid rafts dimensions and non-rafts peroxidability are likely to become part of a positive feedback loop linked to an irreversible amyloid burden and neuronal death during the evolution of AD neuropathology.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chu Hsien Lim ◽  
Prameet Kaur ◽  
Emelyne Teo ◽  
Vanessa Yuk Man Lam ◽  
Fangchen Zhu ◽  
...  

The brains of Alzheimer’s disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer’s disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shady Estfanous ◽  
Kylene P. Daily ◽  
Mostafa Eltobgy ◽  
Nicholas P. Deems ◽  
Midhun N. K. Anne ◽  
...  

Autophagy is a proposed route of amyloid-β (Aβ) clearance by microglia that is halted in Alzheimer’s Disease (AD), though mechanisms underlying this dysfunction remain elusive. Here, primary microglia from adult AD (5xFAD) mice were utilized to demonstrate that 5xFAD microglia fail to degrade Aβ and express low levels of autophagy cargo receptor NBR1. In 5xFAD mouse brains, we show for the first time that AD microglia express elevated levels of microRNA cluster Mirc1/Mir17-92a, which is known to downregulate autophagy proteins. By in situ hybridization in post-mortem AD human tissue sections, we observed that the Mirc1/Mir17-92a cluster member miR-17 is also elevated in human AD microglia, specifically in the vicinity of Aβ deposits, compared to non-disease controls. We show that NBR1 expression is negatively correlated with expression of miR-17 in human AD microglia via immunohistopathologic staining in human AD brain tissue sections. We demonstrate in healthy microglia that autophagy cargo receptor NBR1 is required for Aβ degradation. Inhibiting elevated miR-17 in 5xFAD mouse microglia improves Aβ degradation, autophagy, and NBR1 puncta formation in vitro and improves NBR1 expression in vivo. These findings offer a mechanism behind dysfunctional autophagy in AD microglia which may be useful for therapeutic interventions aiming to improve autophagy function in AD.


2020 ◽  
Vol 16 (S4) ◽  
Author(s):  
Elena Rodriguez‐Vieitez ◽  
Victor Montal ◽  
Jorge Sepulcre ◽  
Cristina Lois ◽  
Bernard Hanseeuw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document