scholarly journals Selective Cell Propagation via Micropatterning of Thermal-activated Hydrogel

2020 ◽  
Author(s):  
Jeffrey C.Y. Chiu ◽  
Joyce A. Teodoro ◽  
Jeong Hyun Lee ◽  
Kerryn Matthews ◽  
Simon P. Duffy ◽  
...  

AbstractThe ability to selectively propagate specific cells is fundamentally important to the development of clonal cell populations. Current methods rely on techniques such as limiting dilution, colony picking, and flow cytometry to transfer single cells into single wells, resulting in workflows that are low-throughput, slowed by propagation kinetics, and susceptible to contamination. Here, we developed a method, called selective laser gelation (SLG), to micropattern hydrogels in cell culture media in order to encapsulate specific cells to selectively arrest their growth. This process relies on the inverse gelation of methylcellulose, which forms a hydrogel when heated rather than cooled. Local heating using an infrared laser enables hydrogel micropatterning, while phase transition hysteresis retains the hydrogel after laser excitation. As a demonstration, we used this approach to selectively propagate transgenic CHO cells with increased antibody productivity. More generally, hydrogel micropatterning provides a simple and non-contact method to selective propagation of cells based on features identified by imaging.One Sentence SummaryInverse gelation of methylcellulose enables hydrogel micropatterning to selectively propagate cells identified by microscopy.

MRS Bulletin ◽  
2002 ◽  
Vol 27 (6) ◽  
pp. 461-464 ◽  
Author(s):  
C. Immerstrand ◽  
K. Holmgren-Peterson ◽  
K.-E. Magnusson ◽  
E. Jager ◽  
M. Krogh ◽  
...  

AbstractThe development of new conjugated-polymer tools for the study of the biological realm, and for use in a clinical setting, is reviewed in this article. Conjugated-polymer actuators, based on the changes of volume of the active conjugated polymer during redox transformation, can be used in electrolytes employed in cell-culture media and in biological fluids such as blood, plasma, and urine. Actuators ranging in size from 10 μm to 100 μm suitable for building structures to manipulate single cells are produced with photolithographic techniques. Larger actuators may be used for the manipulation of blood vessels and biological tissue.


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
KB Killday ◽  
AS Freund ◽  
C Fischer ◽  
KL Colson

1992 ◽  
Vol 68 (05) ◽  
pp. 539-544 ◽  
Author(s):  
Catherine Lenich ◽  
Ralph Pannell ◽  
Jack Henkin ◽  
Victor Gurewich

SummaryWe previously found that human pro-UK expressed in Escherichia coli is more active in fibrinolysis than recombinant human pro-UK obtained from mammalian cell culture media. To determine whether this difference is related to the lack of glycosylation of the E. coli product, we compared the activity of E. coli-derived pro-UK [(-)pro-UK] with that of a glycosylated pro-UK [(+)pro-UK] and of a mutant of pro-UK missing the glycosylation site at Asn-302 [(-) (302) pro-UK]. The latter two pro-UKs were obtained by expression of the human gene in a mammalian cell. The nonglycosylated pro-UKs were activated by plasmin more efficiently (≈2-fold) and were more active in clot lysis (1.5-fold) than the (+)pro-UK. Similarly, the nonglycosylated two-chain derivatives (UKs) were more active against plasminogen and were more rapidly inactivated by plasma inhibitors than the (+)UK.These findings indicate that glycosylation at Asn-302 influences the activity of pro-UK/UK and could be the major factor responsible for the enhanced activity of E. coli-derived pro-UK.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingjing Zhang ◽  
Luong T. H. Nguyen ◽  
Richard Hickey ◽  
Nicole Walters ◽  
Xinyu Wang ◽  
...  

AbstractExtracellular vesicles (EVs) derived from tumor cells have the potential to provide a much-needed source of non-invasive molecular biomarkers for liquid biopsies. However, current methods for EV isolation have limited specificity towards tumor-derived EVs that limit their clinical use. Here, we present an approach called immunomagnetic sequential ultrafiltration (iSUF) that consists of sequential stages of purification and enrichment of EVs in approximately 2 h. In iSUF, EVs present in different volumes of biofluids (0.5–100 mL) can be significantly enriched (up to 1000 times), with up to 99% removal of contaminating proteins (e.g., albumin). The EV recovery rate by iSUF for cell culture media (CCM), serum, and urine corresponded to 98.0% ± 3.6%, 96.0% ± 2.0% and 94.0% ± 1.9%, respectively (p > 0.05). The final step of iSUF enables the separation of tumor-specific EVs by incorporating immunomagnetic beads to target EV subpopulations. Serum from a cohort of clinical samples from metastatic breast cancer (BC) patients and healthy donors were processed by the iSUF platform and the isolated EVs from patients showed significantly higher expression levels of BC biomarkers (i.e., HER2, CD24, and miR21).


2021 ◽  
pp. 106811
Author(s):  
Yuanbin Guo ◽  
Ming Shi ◽  
Xiujuan Liu ◽  
Huagang Liang ◽  
Liming Gao ◽  
...  

Author(s):  
Daniel E Levin ◽  
Arabinda Mandal ◽  
Mark A Fleming ◽  
Katherine H Bae ◽  
Brielle Gerry ◽  
...  

Abstract The role of enteric neurons in driving intestinal peristalsis has been known for over a century. However, in recent decades, scientists have begun to unravel additional complex interactions between this nerve plexus and other cell populations in the intestine. Investigations into these potential interactions is complicated by a paucity of tractable models of these cellular relationships. Here, we describe a novel technique for ex vivo coculture of enteroids, so called “mini-guts,” in juxtaposition to the longitudinal muscle myenteric plexus (LMMP). Key to this system, we developed a LMMP culture media that: 1) allows the LMMP to maintain ex vivo peristalsis for 2 weeks along with proliferation of neurons, glia, smooth muscle and fibroblast cells, and 2) supports the proliferation and differentiation of the intestinal stem cells into enteroids complete with epithelial enterocytes, Paneth cells, goblet cells and enteroendocrine cells. Importantly, this technique identifies a culture condition that supports both the metabolic needs of intestinal epithelium as well as neuronal elements, demonstrating the feasibility of maintaining these two populations in a single culture system. This sets the stage for experiments to better define the regulatory interactions of these two important intestinal cell populations.


2015 ◽  
Vol 99 (11) ◽  
pp. 4645-4657 ◽  
Author(s):  
David Reinhart ◽  
Lukas Damjanovic ◽  
Christian Kaisermayer ◽  
Renate Kunert

Sign in / Sign up

Export Citation Format

Share Document