scholarly journals Identification of potential vaccine candidates against SARS-CoV-2, A step forward to fight COVID-19: A Reverse Vaccinology Approach

Author(s):  
Ekta Gupta ◽  
Rupesh Kumar Mishra ◽  
Ravi Ranjan Kumar Niraj

AbstractThe recent Coronavirus Disease 2019 (COVID-19) causes an immense health crisis to global public health. The COVID-19 is the etiologic agent of a recently arose disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Presently, there is no vaccine available against this emerged viral disease. Therefore, it is indeed a need of the hour to develop an effectual and safe vaccine against this decidedly pandemic disease. In the current study, we collected SARS-CoV-2 genome which is prominent in India against human host, further more using reverse vaccinology here we claim effective vaccine candidates that can be mile stone in battle against COVID19. This novel study divulged one promising antigenic peptide GVYFASTEK from surface glycoprotein (protein accession no. - QIA98583.1) of SARS-CoV-2, which was predicated to be interacted with MHC alleles and showed up to 90% conservancy and high value of antigenicity. Subsequently, the molecular docking and simulation studies were verified molecular interaction of this prime antigenic peptide with the residues of HLA-A*11–01 allele for MHC Class I. After vigorous analysis, this peptide was predicted to be suitable epitope which is capable to induce the strong cell-mediated immune response against the SARS-CoV-2. Consequences from the current study could facilitate selecting SARS-CoV-2 epitopes for vaccine production pipelines in the immediate future. This novel research will certainly pave the way for a fast, reliable and virtuous platform to provide timely countermeasure of this dangerous pandemic disease, COVID-19.

2021 ◽  
Author(s):  
Ekta Gupta ◽  
Rupesh Kumar Mishra ◽  
Ravi Ranjan Kumar Niraj

UNSTRUCTURED The recent Coronavirus Disease 2019 (COVID-19) causes an immense health crisis to global public health. The etiological agent of COVID-19, a recently arose disease is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Presently, more research in the field of effecting vaccine against this emerged viral disease is indeed a need of the hour. In the current study, we collected SARS-CoV-2 genome which is prominent in India against human host, furthermore using reverse vaccinology here we prove effective vaccine candidates that can be milestone in the battle against COVID19. This novel study divulged one promising antigenic peptide GVYFASTEK from surface glycoprotein (protein accession no. - QIA98583.1) of SARS-CoV-2, which was predicted to be interacted with MHC alleles and showed up to 90% conservancy and high value of antigenicity. Subsequently, the molecular docking and simulation studies were verified molecular interaction of this prime antigenic peptide with the residues of HLA-A*11-01 allele for MHC Class I. After vigorous analysis, this peptide was predicted to be a suitable epitope that is capable to induce a strong cell-mediated immune response against the SARS-CoV-2. Consequences from the current study could facilitate selecting SARS-CoV-2 epitopes for vaccine production pipelines in the immediate future. This novel research will certainly pave the way for a fast, reliable and virtuous platform to provide timely countermeasure of this dangerous pandemic disease, COVID-19.


2021 ◽  
Vol 3 (2) ◽  
pp. 01-15
Author(s):  
Makarius Tel Aviv C. Dela Cru ◽  
Benie T. Constantino IH

Dengue virus is the most common mosquito borne viral disease in humans, and poses a major challenge to global public health services. Infection can be caused by any of the 4 DENV serotypes, transmitted by female Aedes aegypti mosquitoes. Presenting features may vary from a mild self-limiting febrile illness to life-threatening symptoms of bleeding, organ impairment, and plasma leakage leading to shock. Early diagnosis and monitoring are critical to reduce mortality, especially in the context of the COVID-19 pandemic. Laboratory tests, such as the serological detection of either antigen or antibodies are useful in the diagnosis. Currently, although a vaccine for DENV is available, it remains a challenge to develop an effective vaccine against 4 discrete serotypes and antiviral drugs effective in reducing morbidity or improving disease outcome.


Medicina ◽  
2019 ◽  
Vol 55 (5) ◽  
pp. 195 ◽  
Author(s):  
Samia Zeb ◽  
Amjad Ali ◽  
Sardar Muhammad Gulfam ◽  
Habib Bokhari

Background and Objective: Vibrio cholerae continues to emerge as a dangerous pathogen because of increasing resistance to a number of antibiotics. This paper provides a solution to emerging antibiotic resistance by introducing novel proteins as vaccine candidates against cholera. Materials and Methods: Vibrio cholerae genome versatility is a hurdle for developing a vaccine to combat diarrhoeal infection, so its core gene information was used to determine a potential vaccine candidate. Whole genome sequence data of more than 100 Vibrio cholerae strains were used simultaneously to get core genome information. The VacSol pipeline based on reverse vaccinology was selected to address the problem of safe, cheap, temperature-stable, and effective vaccine candidates which can be used for vaccine development against Vibrio cholerae. VacSol screens vaccine candidates using integrated, well-known, and robust algorithms/tools for proteome analysis. The proteomes of the pathogens were initially screened to predict homology using BLASTp. Proteomes that are non-homologous to humans are then subjected to a predictor for localization. Helicer predicts transmembrane helices for the protein. Proteins failing to comply with the set parameters were filtered at each step, and finally, 11 proteins were filtered as vaccine candidates. Results: This selected group of vaccine candidates consists of proteins from almost all structural parts of Vibrio cholerae. Their blast results show that this filtered group includes flagellin A protein, a protein from the Zn transporter system, a lipocarrier outer membrane protein, a peptidoglycan-associated protein, a DNA-binding protein, a chemotaxis protein, a tRNA Pseuriudine synthase A, and two selected proteins, which were beta lactamases. The last two uncharacterized proteins possess 100% similarity to V. albensis and Enterobacter, respectively. Tertiary structure and active site determination show a large number of pockets on each protein. Conclusions: The most interesting finding of this study is that 10 proteins out of 11 filtered proteins are introduced as novel potential vaccine candidates. These novel vaccine candidates can result in the development of cost-effective and broad-spectrum vaccines which can be used in countries where cholera is a major contributor to diarrheal disease.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 669
Author(s):  
Mohamed A. Soltan ◽  
Nada Elbassiouny ◽  
Helmy Gamal ◽  
Eslam B. Elkaeed ◽  
Refaat A. Eid ◽  
...  

Moraxella catarrhalis (M. catarrhalis) is a Gram-negative bacterium that can cause serious respiratory tract infections and middle ear infections in children and adults. M. catarrhalis has demonstrated an increasing rate of antibiotic resistance in the last few years, thus development of an effective vaccine is a major health priority. We report here a novel designed multitope vaccine based on the mapped epitopes of the vaccine candidates filtered out of the whole proteome of M. catarrhalis. After analysis of 1615 proteins using a reverse vaccinology approach, only two proteins (outer membrane protein assembly factor BamA and LPS assembly protein LptD) were nominated as potential vaccine candidates. These proteins were found to be essential, outer membrane, virulent and non-human homologs with appropriate molecular weight and high antigenicity score. For each protein, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell lymphocyte (BCL) epitopes were predicted and confirmed to be highly antigenic and cover conserved regions of the proteins. The mapped epitopes constituted the base of the designed multitope vaccine where suitable linkers were added to conjugate them. Additionally, beta defensin adjuvant and pan-HLA DR-binding epitope (PADRE) peptide were also incorporated into the construct to improve the stimulated immune response. The constructed multitope vaccine was analyzed for its physicochemical, structural and immunological characteristics and it was found to be antigenic, soluble, stable, non-allergenic and have a high affinity to its target receptor. Although the in silico analysis of the current study revealed that the designed multitope vaccine has the ability to trigger a specific immune response against M. catarrhalis, additional translational research is required to confirm the effectiveness of the designed vaccine.


The Physician ◽  
2020 ◽  
Vol 6 (2) ◽  
Author(s):  
K K Aggarwal ◽  
Nirmal Kumar Ganguly

Covid-19 or Coronavirus disease-2019, caused by the novel Coronavirus (SARS CoV-2), continues to be a major global public health crisis. There is no specific drug for its treatment and no immunity against the virus. Allowing herd immunity to develop naturally would add to the already high morbidity and mortality and it may take many years. But, the speed with which the virus is spreading leaves us with no choice but to have a vaccine, or at least an emergency-use vaccine ready for use, at the earliest. There are frantic efforts across the world to develop a vaccine. Different approaches such as inactivated and attenuated vaccines, viral vector-based vaccines and DNA- and RNA-based vaccines are being studied. Many vaccines have shown promise in preclinical studies; many have completed or are in phase 1 trials. A safe and effective vaccine against Covid-19 is eagerly awaited. But, even when a vaccine is available, public health measures such as personal hygiene, social distancing, will be equally important to reduce disease transmission. In this article, we give a brief overview of the types of vaccines and the various vaccine initiatives around the world.


Author(s):  
Pragya Yadav ◽  
Raches Ella ◽  
Sanjay Kumar ◽  
Dilip Patil ◽  
Sreelekshmy Mohandas ◽  
...  

Abstract The COVID-19 pandemic is a global health crisis that has severely affected mankind and posed a great challenge to the public health system of affected countries. The availability of a safe and effective vaccine is the need of the hour to overcome this crisis. Here, we have developed and assessed the protective efficacy and immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152) in rhesus macaques (Macaca mulata). Twenty macaques were divided into four groups of five animals each. One group was administered a placebo while three groups were immunized with three different vaccine candidates at 0 and 14 days. All the macaques were challenged with SARS-CoV-2 fourteen days after the second dose. The protective response was observed with increasing SARS-CoV-2 specific IgG and neutralizing antibody titers from 3rd-week post-immunization. Viral clearance was observed from bronchoalveolar lavage fluid, nasal swab, throat swab, and lung tissues at 7 days post-infection in the vaccinated groups. No evidence of pneumonia was observed by histopathological examination in vaccinated groups, unlike the placebo group which showed features of interstitial pneumonia and localization of viral antigen in the alveolar epithelium and macrophages by immunohistochemistry. Data from this study substantiate the immunogenicity of the vaccine candidates and BBV152 is being evaluated in Phase I clinical trials in India (NCT04471519).


Author(s):  
Claire Aguttu ◽  
Brenda Apio Okech ◽  
Ambrose Mukisa ◽  
George William Lubega

Abstract Background Plasmodium falciparum is the most deadly and leading cause of morbidity and mortality in Africa. About 90% of all malaria deaths in the world today occur in Sub-Saharan Africa especially in children aged < 5 years. In 2018, it was reported that there were 228 million malaria cases that resulted in 405,000 deaths from 91 countries. Currently, a fully effective and long-lasting preventive malaria vaccine is still elusive therefore more effort is needed to identify better effective vaccine candidates. The aim of this study was to identify and characterize hypothetical proteins as vaccine candidates derived from Plasmodium falciparum 3D7 genome by reverse vaccinology. Results Of the 23 selected hypothetical proteins, 5 were predicted on the extracellular localization by WoLFPSORTv.2.0 program and all the 5 had less than 2 transmembrane regions that were predicted by TMHMMv2.0 and HMMTOP programs at default settings. Two out of the five proteins lacked secretory signal peptides as predicted by SignalP program. Among the 5 extracellular proteins, 3 were predicted to be antigenic by VaxiJen (score ≥ 0.5) and had negative GRAVY values ranging from − 1.156 to − 0.440. B cell epitope prediction by ABCpred and BCpred programs revealed a total of 15 antigenic epitopes. A total of 13 cytotoxic T cells were predicted from the 3 proteins using CTLPred online server. Only 2 out of the 13 CTL were antigenic, immunogenic, non-allergenic, and non-toxic using VaxiJen, IEDB, AllergenFp, and Toxinpred servers respectively in that order. Five HTL peptides from XP_001351030.1 protein are predicted inducers of all the three cytokines. STRING protein–protein network analysis of HPs revealed XP_001350955.1 closely interacts with nucleoside diphosphate kinase (PF13-0349) at 0.704, XP_001351030.1 interacts with male development protein1 (Mdv-1) at 0.645, and XP_001351047.1 with an uncharacterized protein (MAL8P1.53) at 0.400. Conclusion Reverse vaccinology is a promising strategy for the screening and identification of antigenic antigens with potential capacity to elicit cellular and humoral immune responses against P. falciparum infection. In this study, potential vaccine candidates of Plasmodium falciparum were identified and screened using standard bioinformatics tools. The vaccine candidates contained antigenic and immunogenic epitopes which could be considered for novel and effective vaccine targets. However, we strongly recommend in vivo and in vitro experiments to validate their immunogenicity and protective efficacy to completely decipher the vaccine targets against malaria.


Author(s):  
W.L. Steffens ◽  
M.B. Ard ◽  
C.E. Greene ◽  
A. Jaggy

Canine distemper is a multisystemic contagious viral disease having a worldwide distribution, a high mortality rate, and significant central neurologic system (CNS) complications. In its systemic manifestations, it is often presumptively diagnosed on the basis of clinical signs and history. Few definitive antemortem diagnostic tests exist, and most are limited to the detection of viral antigen by immunofluorescence techniques on tissues or cytologic specimens or high immunoglobulin levels in CSF (cerebrospinal fluid). Diagnosis of CNS distemper is often unreliable due to the relatively low cell count in CSF (<50 cells/μl) and the binding of blocking immunoglobulins in CSF to cell surfaces. A more reliable and definitive test might be possible utilizing direct morphologic detection of the etiologic agent. Distemper is the canine equivalent of human measles, in that both involve a closely related member of the Paramyxoviridae, both produce mucosal inflammation, and may produce CNS complications. In humans, diagnosis of measles-induced subacute sclerosing panencephalitis is through negative stain identification of whole or incomplete viral particles in patient CSF.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mehreen Ismail ◽  
Zureesha Sajid ◽  
Amjad Ali ◽  
Xiaogang Wu ◽  
Syed Aun Muhammad ◽  
...  

Background: Human Papillomavirus (HPV) is responsible for substantial morbidity and mortality worldwide. We predicted immunogenic promiscuous monovalent and polyvalent T-cell epitopes from the polyprotein of the Human Papillomavirus (HPV) using a range of bioinformatics tools and servers. Methods: We used immunoinformatics and reverse vaccinology-based approaches to design prophylactic peptides by antigenicity analysis, Tcell epitopes prediction, proteasomal and conservancy evaluation, host-pathogen protein interactions, and in silico binding affinity analysis. Results: We found two early proteins (E2 and E6) and two late proteins (L1 and L2) of HPV as potential vaccine candidates. Of these proteins (E2, E6, L1 & L2), 2-epitopes of each candidate protein for multiple alleles of MHC class I and II bearing significant binding affinity (>-6.0 kcal/mole). These potential epitopes for CD4+ and CD8+ T-cells were also linked to design polyvalent construct using GPGPG linkers. Cholera toxin B and mycobacterial heparin-binding hemagglutinin adjuvant with a molecular weight of 12.5 and 18.5 kDa were used for epitopes of CD4+ and CD8+ T-cells respectively. The molecular docking indicated the optimum binding affinity of HPV peptides with MHC molecules. This interaction showed that our predicted vaccine candidates are suitable to trigger the host immune system to prevent HPV infections. Conclusion: The predicted conserved T-cell epitopes would contribute to the imminent design of HPV vaccine candidates, which will be able to induce a broad range of immune-responses in a heterogeneous HLA population.


Sign in / Sign up

Export Citation Format

Share Document