scholarly journals Transfer learning improves antibiotic resistance class prediction

2020 ◽  
Author(s):  
Md-Nafiz Hamid ◽  
Iddo Friedberg

AbstractMotivationAntibiotic resistance is a growing public health problem, which affects millions of people worldwide, and if left unchecked is expected to upend many aspects of healthcare as it is practiced today. Identifying the type of antibiotic resistant genes in genome and metagenomic sample is of utmost importance in the prevention, diagnosis, and treatment of infections. Today there are multiple tools available that predict antibiotic resistance class from DNA and protein sequences, yet there is a lack of benchmarks on the performances of these tools.ResultsWe have developed a dataset that is curated from 15 available databases, and annotated with their antibiotic class labels. We also developed a transfer learning approach with neural networks, TRAC, that outperforms existing antiobiotic resistance prediction tools. While TRAC provides the current state-of-the-art performance, we hope our newly developed dataset will also provide the community with a much needed standardized dataset to develop novel methods that can predict antibiotic resistance class with superior prediction performance.AvailabilityTRAC is available at github (https://github.com/nafizh/TRAC) and the datasets are available at figshare (https://doi.org/10.6084/m9.figshare.11413302)[email protected], [email protected]

2021 ◽  
pp. 2155-2159
Author(s):  
Wafaa A. Abd El-Ghany

Zoonotic diseases are diseases that are transmitted from animals to humans and vice versa. Pseudomonas aeruginosa (P. aeruginosa) is a pathogen with zoonotic nature. Commercial poultry could be infected with P. aeruginosa, especially at young ages with great losses. Infection of embryos with P. aeruginosa induced death in the shell, while infection of chicks led to septicemia, respiratory and enteric infections, and high mortality. Humans are also highly susceptible to P. aeruginosa infection, and the disease is associated with severe lung damage, especially in immunocompromised patients. Chicken carcass and related poultry retail products play an important role in the transmission of P. aeruginosa to humans, especially after processing in abattoirs. Treatment of P. aeruginosa infection is extremely difficult due to continuous development of antibiotic resistance. The transfer of antibiotic-resistant genes from poultry products to humans creates an additional public health problem. Accordingly, this study focused on avian pseudomonad, especially P. aeruginosa, with respect to infection of poultry, transmission to humans, and treatment and antibiotic resistance.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Marlène Maeusli ◽  
Bosul Lee ◽  
Sarah Miller ◽  
Zeferino Reyna ◽  
Peggy Lu ◽  
...  

ABSTRACT Agricultural use of antibiotics is recognized by the U.S. Centers for Disease Control and Prevention as a major contributor to antibiotic-resistant infections. While most One Health attention has been on the potential for antibiotic resistance transmission from livestock and contaminated meat products to people, plant foods are fundamental to the food chain for meat eaters and vegetarians alike. We hypothesized that environmental bacteria that colonize plant foods may serve as platforms for the persistence of antibiotic-resistant bacteria and for horizontal gene transfer of antibiotic-resistant genes. Donor Acinetobacter baylyi and recipient Escherichia coli were cocultured in vitro, in planta on lettuce, and in vivo in BALB/c mice. We showed that nonpathogenic, environmental A. baylyi is capable of transferring plasmids conferring antibiotic resistance to E. coli clinical isolates on lettuce leaf discs. Furthermore, transformant E. coli from the in planta assay could then colonize the mouse gut microbiome. The target antibiotic resistance plasmid was identified in mouse feces up to 5 days postinfection. We specifically identified in vivo transfer of the plasmid to resident Klebsiella pneumoniae in the mouse gut. Our findings highlight the potential for environmental bacteria exposed to antibiotics to transmit resistance genes to mammalian pathogens during ingestion of leafy greens. IMPORTANCE Previous efforts have correlated antibiotic-fed livestock and meat products with respective antibiotic resistance genes, but virtually no research has been conducted on the transmission of antibiotic resistance from plant foods to the mammalian gut (C. S. Hölzel, J. L. Tetens, and K. Schwaiger, Pathog Dis 15:671–688, 2018, https://doi.org/10.1089/fpd.2018.2501; C. M. Liu et al., mBio 9:e00470-19, 2018, https://doi.org/10.1128/mBio.00470-18; B. Spellberg et al., NAM Perspectives, 2016, https://doi.org/10.31478/201606d; J. O’Neill, Antimicrobials in agriculture and the environment, 2015; Centers for Disease Control and Prevention, Antibiotic resistance threats in the United States, 2019). Here, we sought to determine if horizontal transmission of antibiotic resistance genes can occur between lettuce and the mammalian gut microbiome, using a mouse model. Furthermore, we have created a new model to study horizontal gene transfer on lettuce leaves using an antibiotic-resistant transformant of A. baylyi (AbzeoR).


2019 ◽  
Vol 43 (5) ◽  
pp. 490-516 ◽  
Author(s):  
Mark Laws ◽  
Ali Shaaban ◽  
Khondaker Miraz Rahman

ABSTRACTInfections of antibiotic-resistant pathogens pose an ever-increasing threat to mankind. The investigation of novel approaches for tackling the antimicrobial resistance crisis must be part of any global response to this problem if an untimely reversion to the pre-penicillin era of medicine is to be avoided. One such promising avenue of research involves so-called antibiotic resistance breakers (ARBs), capable of re-sensitising resistant bacteria to antibiotics. Although some ARBs have previously been employed in the clinical setting, such as the β-lactam inhibitors, we posit that the broader field of ARB research can yet yield a greater diversity of more effective therapeutic agents than have been previously achieved. This review introduces the area of ARB research, summarises the current state of ARB development with emphasis on the various major classes of ARBs currently being investigated and their modes of action, and offers a perspective on the future direction of the field.


2017 ◽  
Vol 61 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Vijay Tripathi ◽  
Eddie Cytryn

Antibiotics are considered to be one of the major medical breakthroughs in history. Nonetheless, over the past four decades, antibiotic resistance has reached alarming levels worldwide and this trend is expected to continue to increase, leading some experts to forecast the coming of a ‘post-antibiotic’ era. Although antibiotic resistance in pathogens is traditionally linked to clinical environments, there is a rising concern that the global propagation of antibiotic resistance is also associated with environmental reservoirs that are linked to anthropogenic activities such as animal husbandry, agronomic practices and wastewater treatment. It is hypothesized that the emergence and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) within and between environmental microbial communities can ultimately contribute to the acquisition of antibiotic resistance in human pathogens. Nonetheless, the scope of this phenomenon is not clear due to the complexity of microbial communities in the environment and methodological constraints that limit comprehensive in situ evaluation of microbial genomes. This review summarizes the current state of knowledge regarding antibiotic resistance in non-clinical environments, specifically focusing on the dissemination of antibiotic resistance across ecological boundaries and the contribution of this phenomenon to global antibiotic resistance.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Anahit Penesyan ◽  
Stephanie S. Nagy ◽  
Staffan Kjelleberg ◽  
Michael R. Gillings ◽  
Ian T. Paulsen

Abstract Infections caused by Acinetobacter baumannii are increasingly antibiotic resistant, generating a significant public health problem. Like many bacteria, A. baumannii adopts a biofilm lifestyle that enhances its antibiotic resistance and environmental resilience. Biofilms represent the predominant mode of microbial life, but research into antibiotic resistance has mainly focused on planktonic cells. We investigated the dynamics of A. baumannii biofilms in the presence of antibiotics. A 3-day exposure of A. baumannii biofilms to sub-inhibitory concentrations of antibiotics had a profound effect, increasing biofilm formation and antibiotic resistance in the majority of biofilm dispersal isolates. Cells dispersing from biofilms were genome sequenced to identify mutations accumulating in their genomes, and network analysis linked these mutations to their phenotypes. Transcriptomics of biofilms confirmed the network analysis results, revealing novel gene functions of relevance to both resistance and biofilm formation. This approach is a rapid and objective tool for investigating resistance dynamics of biofilms.


2019 ◽  
Author(s):  
Fabrizio Spagnolo ◽  
Daniel E. Dykhuizen

AbstractAntibiotic resistance continues to grow as a public health problem. One of the reasons for this continued growth is that resistance to antibiotics is strongly selected for in the presence of antibiotics and weakly selected against after their removal. This is frequently thought to be due to the effects of compensatory mutations. However, compensatory mutations are often not found in clinically relevant strains of antibiotic resistant pathogens. Here, we conduct experiments in vitro that highlight the role that fine scale differences in environment play in the maintenance of populations after selection for resistance. We show that differences in the mode of growth, dictated by environmental factors, are capable of reliably changing the force and direction of selection. Our results show that antibiotic resistance can increase evolvability in environments if conditions for selection exist, selecting differentially for newly arising variation and moving populations to previously unavailable adaptive peaks.SignificanceAntibiotic resistant bacteria are a large and growing problem for public health. A major question has been why antibiotic resistant strains do not disappear when they must compete with higher fitness drug sensitive strains. Here we show that selection for antibiotic resistant strains is particularly sensitive to differences in environmental conditions and that these differences help to define the fitness landscapes upon which these populations adapt. The result is an increase in evolvability, with many adaptive peaks that drug resistant populations can explore through natural selection, making predictions of evolution difficult and selection against resistant strains improbable.


2019 ◽  
pp. 48-54
Author(s):  
Duy Binh Nguyen ◽  
Trung Tien Phan ◽  
Trong Hanh Hoang ◽  
Van Tuan Mai ◽  
Xuan Chuong Tran

Sepsis is a serious bacterial infection. The main treatment is using antibiotics. However, the rate of antibiotic resistance is very high and this resistance is related to the outcome of treatment. Objectives: To evaluate the situation of antibiotic resistance of some isolated bacteria in sepsis patients treated at Hue Central Hospital; to evaluate the relationship of antibiotic resistance to the treatment results in patients with sepsis. Subjects and methods: prospective study of 60 sepsis patients diagnosed according to the criteria of the 3rd International Consensus-Sepsis 3 and its susceptibility patterns from April 2017 to August 2018. Results and Conclusions: The current agents of sepsis are mainly S. suis, Burkhoderiae spp. and E. coli. E. coli is resistant to cephalosporins 3rd, 4th generation and quinolone group is over 75%; resistance to imipenem 11.1%; the ESBL rate is 60%. S. suis resistant to ampicilline 11.1%; no resistance has been recorded to ceftriaxone and vancomycine. Resistance of Burkholderiae spp. to cefepime and amoxicillin/clavulanic acid was 42.9% and 55.6%, resistant to imipenem and meropenem is 20%, resistance to ceftazidime was not recorded. The deaths were mostly dued to E. coli and K. pneumoniae. The mortality for patients infected with antibiotic-resistant bacteria are higher than for sensitive groups. Key words: Sepsis, bacterial infection, antibiotics


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 874
Author(s):  
Periyasamy Sivalingam ◽  
John Poté ◽  
Kandasamy Prabakar

Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.


Sign in / Sign up

Export Citation Format

Share Document