scholarly journals The effect of odor enrichment on olfactory acuity: Olfactometric testing in mice using two mirror-molecular pairs

2020 ◽  
Author(s):  
Alyson Blount ◽  
David M. Coppola

AbstractIntelligent systems in nature like the mammalian nervous system benefit from adaptable inputs that can tailor response profiles to their environment that varies in time and space. Study of such plasticity, in all its manifestations, forms a pillar of classical and modern neuroscience. This study is concerned with a novel form of plasticity in the olfactory system referred to as induction. In this process, subjects unable to smell a particular odor, or unable to differentiate similar odors, gain these abilities through mere exposure to the odor(s) over time without the need for attention or feedback (reward or punishment). However, few studies of induction have rigorously documented changes in olfactory threshold for the odor(s) used for “enrichment.” We trained 36 CD-1 mice in an operant-olfactometer (go/no go task) to discriminate a mixture of stereoisomers from a lone stereoisomer using two enantiomeric pairs: limonene and carvone. We also measured each subject’s ability to detect one of the stereoisomers of each odor. In order to assess the effect of odor enrichment on enantiomer discrimination and detection, mice were exposed to both stereoisomers of limonene or carvone for 2 to 12 weeks. Enrichment was effected by adulterating the subject’s food (passive enrichment) with one pair of enantiomers or by exposing them to the enantiomers in daily operant discrimination testing (active enrichment). We found that neither form of enrichment altered discrimination nor detection. And this result pertained using either within-subject or between-subject experimental designs. Unexpectedly, our threshold measurements were among the lowest ever recorded for any species, which we attributed to the relatively greater amount of practice (task replication) we allowed our mice compared to other reports. Interestingly, discrimination thresholds were no greater (limonene) or only modestly greater (carvone) from detection thresholds suggesting chiral-specific olfactory receptors determine thresholds for these compounds. The super-sensitivity of mice, shown in this study, to the limonene and carvone enantiomers, compared to the much lesser acuity of humans for these compounds, reported elsewhere, may resolve the mystery of why the former group with four-fold more olfactory receptors have tended, in previous studies, to have similar thresholds to the latter group. Finally, our results are consistent with the conclusion that supervised-perceptual learning i.e. that involving repeated feedback for correct and incorrect decisions, rather than induction, is the form of plasticity that allows animals to fully realize the capabilities of their olfactory system.

1956 ◽  
Vol 186 (2) ◽  
pp. 255-257 ◽  
Author(s):  
Raymond R. Walsh

Studies of single-cell spike discharges in the olfactory bulb of the rabbit indicate the presence of three classes of neurons as characterized by their discharge patterns. Cells of class I discharge continuously and spontaneously; class II cells discharge intermittently in bursts, in synchrony with the passage of air through the nose. Cells of classes I and II are unmodified during olfactory stimulation. It appears there are many cells in the olfactory bulb whose discharge patterns are unrelated to excitation of the olfactory receptors by odors. Cells of class III respond to appropriate odors; the response of such cells to some odors and not others indicates that odor specificity is a fundamental characteristic of the olfactory system.


Author(s):  
Sina Cassau ◽  
Jürgen Krieger

AbstractThe sense of smell enables insects to recognize olfactory signals crucial for survival and reproduction. In insects, odorant detection highly depends on the interplay of distinct proteins expressed by specialized olfactory sensory neurons (OSNs) and associated support cells which are housed together in chemosensory units, named sensilla, mainly located on the antenna. Besides odorant-binding proteins (OBPs) and olfactory receptors, so-called sensory neuron membrane proteins (SNMPs) are indicated to play a critical role in the detection of certain odorants. SNMPs are insect-specific membrane proteins initially identified in pheromone-sensitive OSNs of Lepidoptera and are indispensable for a proper detection of pheromones. In the last decades, genome and transcriptome analyses have revealed a wide distribution of SNMP-encoding genes in holometabolous and hemimetabolous insects, with a given species expressing multiple subtypes in distinct cells of the olfactory system. Besides SNMPs having a neuronal expression in subpopulations of OSNs, certain SNMP types were found expressed in OSN-associated support cells suggesting different decisive roles of SNMPs in the peripheral olfactory system. In this review, we will report the state of knowledge of neuronal and non-neuronal members of the SNMP family and discuss their possible functions in insect olfaction.


2002 ◽  
Vol 94 (3) ◽  
pp. 841-850 ◽  
Author(s):  
George Grouios

A case of phantom smelling (phantosmia) is described in a 28-yr.-old man who developed permanent bilateral anosmia after a serious injury to olfaction-related brain structures at the age of 25 years. The findings indicate that, even years after loss of input from olfactory receptors, the neural representation of olfactory perception can still recreate olfactory sensations without any conscious recall of them. This indicates that the neural representation of olfactory sensations remains functional and implies that neuronal activity in the olfactory organ or in other brain structures gives rise to olfactory experiences perceived as originating from the perception of original odor substances. The report suggests the intriguing possibility that the olfactory perception is not a passive process that merely reflects its normal input from the olfactory system but is continuously generated by a neural representation in the olfactory organ or in other olfaction-related brain structures, based on both genetic and sensory determinants. To the author's knowledge this is the first reported case of its kind.


Chemosensors ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 32 ◽  
Author(s):  
Paolo Pelosi ◽  
Jiao Zhu ◽  
Wolfgang Knoll

Since the first attempts to mimic the human nose with artificial devices, a variety of sensors have been developed, ranging from simple inorganic and organic gas detectors to biosensing elements incorporating proteins of the biological olfactory system. In order to design a device able to mimic the human nose, two major issues still need to be addressed regarding the complexity of olfactory coding and the extreme sensitivity of the biological system. So far, only 50 of the approximately 300–400 functioning olfactory receptors have been de-orphanized, still a long way from breaking the human olfactory code. On the other hand, the exceptional sensitivity of the human nose is based on amplification mechanisms difficult to reproduce with electronic circuits, and perhaps novel approaches are required to address this issue. Here, we review the recent literature on chemical sensing both in biological systems and artificial devices, and try to establish the state-of-the-art towards the design of an electronic nose.


2004 ◽  
Vol 123 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Ivan Manzini ◽  
Detlev Schild

In olfactory receptor neurons (ORNs) of aquatic animals amino acids have been shown to be potent stimuli. Here we report on calcium imaging experiments in slices of the olfactory mucosa of Xenopus laevis tadpoles. We were able to determine the response profiles of 283 ORNs to 19 amino acids, where one profile comprises the responses of one ORN to 19 amino acids. 204 out of the 283 response profiles differed from each other. 36 response spectra occurred more than once, i.e., there were 36 classes of ORNs identically responding to the 19 amino acids. The number of ORNs that formed a class ranged from 2 to 13. Shape and duration of amino acid-elicited [Ca2+]i transients showed a high degree of similarity upon repeated stimulation with the same amino acid. Different amino acids, however, in some cases led to clearly distinguishable calcium responses in individual ORNs. Furthermore, ORNs clearly appeared to gain selectivity over time, i.e., ORNs of later developmental stages responded to less amino acids than ORNs of earlier stages. We discuss the narrowing of ORN selectivity over stages in the context of expression of olfactory receptors.


2019 ◽  
Author(s):  
Lucia L. Prieto-Godino ◽  
Ana F. Silbering ◽  
Mohammed A. Khallaf ◽  
Steeve Cruchet ◽  
Karolina Bojkowska ◽  
...  

ABSTRACTProgrammed cell death (PCD) is widespread during neurodevelopment, typically eliminating the surpluses of neuronal production. Employing the Drosophila olfactory system, we examined the potential of cells fated to die to contribute to circuit evolution. Inhibition of PCD is sufficient to generate many new cells that express neural markers and exhibit odor-evoked activity. These “undead” neurons express a subset of olfactory receptors that, intriguingly, is enriched for recent receptor duplicates and include some normally found in other chemosensory organs and life-stages. Moreover, undead neuron axons integrate into the olfactory circuitry in the brain, forming novel receptor/glomerular couplings. Comparison of homologous olfactory lineages across drosophilids reveals natural examples of fate changes from death to a functional neuron. Finally, we provide evidence that PCD contributes to evolutionary differences in carbon dioxide-sensing circuit formation in Drosophila and mosquitoes. These results reveal the remarkable potential of alterations in PCD patterning to evolve new neural pathways.


2017 ◽  
Author(s):  
Longzhi Tan ◽  
X. Sunney Xie

AbstractIn the mouse olfactory system, spatially regulated expression of > 1,000 olfactory receptors (ORs) ― a phenomenon termed “zones” ― forms a topological map in the main olfactory epithelium (MOE). However, the zones of most ORs are currently unknown. By sequencing mRNA of 12 isolated MOE pieces, we mapped out zonal information for 1,033 OR genes with an estimated accuracy of 0.3 zones, covering 81% of all intact OR genes and 99.4% of total OR mRNA abundance. Zones tend to vary gradually along chromosomes. We further identified putative non-OR genes that may exhibit zonal expression.


2019 ◽  
Vol 34 (2) ◽  
pp. 217-229 ◽  
Author(s):  
Boo-Young Kim ◽  
JuYeon Park ◽  
EuiJin Kim ◽  
ByungGuk Kim

Background Several studies have reported beneficial effects of olfactory training (OT) on the olfactory nervous system. However, the mechanisms underlying the regeneration of the olfactory system induced by OT are still under investigation. Objectives To determine the key mechanisms involved in the olfactory system recovery and to assess the neuroplastic effects of OT. Methods Thirty healthy female C57BL/6 mice were randomly allocated to 4 groups: control, n = 6; anosmia (no treatment), n = 8; OT, n = 8; and steroid treatment; n = 8. Except for the control group, mice were administered 3-methylindole. Anosmia was assessed using a food-finding test (FFT). The olfactory neuroepithelium was for histological examinations, gene ontology with pathway analyses, RNA, and protein studies. Results FFT was significantly reduced at 3 weeks in the OT mice versus steroids (78.27 s vs 156.83 s, P < .008) and controls (78.27 s vs 13.14 s, P < .003), although final outcome in the FFT was similar in these groups. Expression of olfactory and neurogenesis marker was higher in the olfactory neuroepithelium of the OT group than in the anosmia group without treatment. The mechanisms underlying olfactory regeneration might be related to early olfactory receptor stimulation, followed by neurotrophic factor stimulation of neuronal plasticity. Conclusion OT can improve olfactory function and accelerate olfactory recovery. The mechanisms underlying olfactory regeneration might be related to an initial stimulation of olfactory receptors followed by neurogenesis. Olfactory ensheathing cells might play an important role in olfactory regeneration following OT, based on the observed changes in messenger ribonucleic acid (mRNA) and protein expression, as well as the findings of the gene analysis.


1999 ◽  
Vol 202 (4) ◽  
pp. 365-376 ◽  
Author(s):  
M. Mezler ◽  
S. Konzelmann ◽  
J. Freitag ◽  
P. Rossler ◽  
H. Breer

A coordinated expression of tissue- and cell-specific genes during development is required to establish the complex functional organization of the vertebrate olfactory system. Owing to the unique features of its olfactory system and the well-characterized phases of its development, Xenopus laevis was chosen as a model organism to study the onset and the temporal and spatial patterns of expression of olfactory-specific genes. Using RT-PCR and in situ hybridization, it was found that expression of Xenopus olfactory marker protein and of class I receptors, which are thought to be responsible for the perception of water-soluble odorants, was detectable as early as stage 32, less than 2 days after fertilization. In contrast, expression of class II receptors, which are thought to recognize airborne odours, was not detected before stage 49, approximately 12 days after fertilization. The results indicate that the expression of olfactory receptors and marker protein is governed by temporally regulated cues during development.


1980 ◽  
Vol 58 (10) ◽  
pp. 1778-1784 ◽  
Author(s):  
John Caprio

A comparison of olfactory receptor responses of three species of freshwater catfishes (family Ictaluridae) and one species of marine catfish (family Arridae) was performed. With the exception of the reduced response of the sea catfish (Arius felis) to L-glutamine, no distinctive species specific differences in the electro-olfactogram (EOG) responses were noted. The phasic EOG response increased exponentially with a logarithmic increase in amino acid concentration from threshold to 10−2M. The relative stimulatory effectiveness of the amino acids tested was similar among the four species. The olfactory receptors were highly responsive to L-cysteine and to amino acids containing five carbon atoms having unbranched and uncharged side chains. From phyletic relationships of the species tested, the present data suggest that the olfactory system of the North American catfishes has remained temporally conservative.


Sign in / Sign up

Export Citation Format

Share Document