scholarly journals Population structure of the invasive golden mussel (Limnoperna fortunei) on reservoirs from five Brazilian drainage basins

2020 ◽  
Author(s):  
João G. R. N. Ferreira ◽  
Giordano Bruno Soares-Souza ◽  
Juliana A. Americo ◽  
Aline Dumaresq ◽  
Mauro F. Rebelo

AbstractThe golden mussel (Limnoperna fortunei) is a freshwater bivalve that was introduced in South America almost 30 years ago, likely through ballast water of Asian ships. Since then, it has spread across the continent, causing both economic and environmental impacts. The study of the population structure of an invasive species may bring valuable insights towards understanding its pattern of dispersion, which in turn will help to create more effective management plans. Here, we have compared mussel populations from 5 different Brazilian reservoirs and tested for the presence of geographic genetic structure. In order to obtain a high number of single nucleotide variants (SNVs) at good cost-benefit, we have for the first time applied the double digest restriction-site associated DNA sequencing (ddRAD-seq) protocol for the golden mussel. The ddRAD-seq protocol allowed us to obtain 2046 SNVs, which were then used to assess population structure by applying three independent methodologies: Principal Component Analysis (PCA), Bayesian Clustering and Phylogenetic Tree. All methodologies have indicated absent geographic structure.

2014 ◽  
Vol 86 (3) ◽  
pp. 1373-1384 ◽  
Author(s):  
FABIANA G. BARBOSA

Limnoperna fortunei (golden mussel) is a freshwater bivalve native to Southeast Asia, but is becoming an invasive species in several aquatic ecosystems in the world. In this study, a scientometric analysis was performed to identify the patterns, trends and gaps of knowledge for this invasive species. A survey of the published literature was conducted using the database of the Thomson Institute for Scientific Information (ISI). A total of 107 papers were surveyed that were published between 1982 and 2012 in 60 journals. The number of papers on L. fortunei over the years has increased, especially within the last eight years of the study period. Argentina, Brazil, and Japan are the countries that contributed the most papers to the literature on invasive bivalve. The majority of papers were field-observational studies. Among some important gaps that need to be addressed are the relatively small number and/or lack of studies conducted in the native countries and in countries invaded by L. fortunei, the lack of internationally collaborative publications in these countries, as well as a low number of internationally collaborative studies.


2016 ◽  
Vol 76 (1) ◽  
pp. 154-161 ◽  
Author(s):  
J. Ernandes-Silva ◽  
F. H. Ragonha ◽  
S. Jati ◽  
A. M. Takeda

Abstract Limnoperna fortunei Dunker, 1857 is an Asian invasive freshwater bivalve. Although there need to contain their spread, studies about the biology of the larvae are scarce. We correlated the larval stages of L. fortunei with biotic factors such as phytoplankton and main abiotic variables in lotic environments of the Upper Paraná River floodplain. The four samples were taken quarterly during the year 2012. The Principal component analysis (PCA) showed only spatial differences, as did a Canonical Correspondence Analysis (CCA). High densities of larvae were recorded in all samples the Paraná River and Baía River only in December, especially those in their initial stage. In the biovolume of Class of algae, Bacillarophyceae showed the highest value, but Chlorophycea who was strongly correlated with the density of D-stage larvae. The large variety of phytoplankton, especially microplankton Chlorophyceae, high values of PO4, NH4 and temperature were positively correlated with high densities of D-stage larvae. We conclude that high temperature, and food availability, indicated by phytoplankton community, favored the reproduction of L. fortunei and enhance the ability of specie dispersion due to the increase in the emission of propagules. Therefore, studies that address the biology of golden mussel larvae should be performed in order to prevent its spread.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Wang ◽  
Chunyan Ma ◽  
Longling Ouyang ◽  
Wei Chen ◽  
Ming Zhao ◽  
...  

AbstractIn order to provide valuable guidelines for the conservation of germplasm of Lateolabrax maculatus, the genetic diversity and population structure analysis were evaluated for eight geographic populations along coastal regions of China, using 11 microsatellite DNA markers. The genetic parameters obtained showed that, eight populations can be clustered into two groups, the Northern group and the Southern group, concordant with their geographical positions. The UPGMA tree constructed according to the Nei’s genetic distance along with the structure analysis and discriminant analysis of principal component also supported this result. This might be explained by the geographic separation and the divergent environmental conditions among the populations. It's worth noting that, QD (Qingdao) population from northern area was assigned to the Southern group and showed a close genetic relationship and similar genetic constitution with the southern populations. We speculated that large scales of anthropogenic transportation of wild fries from QD populations to the southern aquaculture areas in history should be the primary cause. The populations from GY (Ganyu), RD (Rudong) and BH (Binhai) had higher genetic diversity and showed limited genetic exchange with other populations, indicating better conservation of the natural resources in these regions. All populations were indicated to have experienced bottleneck events in history.


2012 ◽  
Vol 84 (4) ◽  
pp. 1065-1071 ◽  
Author(s):  
Patricio J. Pereyra ◽  
Gustavo B. Rossini ◽  
Gustavo Darrigran

The golden mussel Limnoperna fortunei (Dunker 1857) is one of the most distributed Nuisance Invasive Species (NIS) in South America, and a threat of great concern for the industry of the area. In this study, we carried out toxicity tests made with a Neem's oil solution with L. fortunei larvae and benthonic adults (7, 13 and 19 ± 1 mm). Tests with non-target species (Daphnia magna, Lactuca sativa and Cnesterodon decemmculatus) were also made with the aim to evaluate the potential toxicity of the Neem's solution in the environment. The LC100 of Neem's solution obtained for larvae was 500 µl/L, a value much higher than the one obtained for D. magna and C. decemmaculatus. Thus, we recommend that it should not be used in open waters. However, since the adults were killed in 72 h and the larvae in 24 h, this product can be used in closed systems, in man-made facilities.


2012 ◽  
Vol 23 (3) ◽  
pp. 282-292 ◽  
Author(s):  
Vivianne Eilers ◽  
Márcia Divina de Oliveira ◽  
Kennedy Francis Roche

AIM: The present study involved an analysis of the monthly variations in the population densities and body sizes of the different stages of planktonic larvae of the invasive golden mussel (Limnoperna fortunei), in the rivers Paraguay and Miranda; METHODS: The study was carried out between February 2004 and January 2005. Monthly collection of the plankton samples was accompanied by physical, chemical and biological analyses of the water; RESULTS: The Miranda River presented higher values of calcium, pH, alkalinity, conductivity and total phosphorous. Larval density varied from 0-24 individuals.L-1 in the Paraguay River, with a peak in March of 2004, while in the Miranda River, densities varied between 0-9 individuals.L-1 with a peak in February of 2004. No larvae were encountered during the coldest months, May and June. No significant correlations were found between environmental variables and larval density in either river. Only the valved larval stages were recorded. The "D" and veliger forms were most abundant; umbonate larvae were rare in the Miranda River samples. Mean body sizes of "D", veliger and umbonate larval stages were, respectively, 111, 135 and 152 µm, in the Paraguay River, and 112, 134 and 154 µm in the Miranda River. Principal Components Analysis indicated positive relationships between "D" larval stage size and the ratio between inorganic and organic suspended solids, while negative relationships were found between larval size and calcium and chlorophyll-<img border=0 width=7 height=8 src="/img/revistas/alb/2012nahead/ALB_AOP_230307car01.jpg">; CONCLUSIONS: The larvae were recorded in the plankton during most of the year, with the exception of the two colder months. Neither densities nor larval stage body sizes were significantly different between the two rivers. Possible positive effects of food and calcium concentrations on body size were not recorded. This species may be adapted to grow in environments with elevated sediment concentrations.


2016 ◽  
Vol 170 ◽  
pp. 223-228 ◽  
Author(s):  
Francine Girardello ◽  
Camila Custódio Leite ◽  
Izabel Vianna Villela ◽  
Miriana da Silva Machado ◽  
André Luiz Mendes Juchem ◽  
...  

2020 ◽  
Vol 49 (6) ◽  
pp. 1083-1092
Author(s):  
S Goitom ◽  
M.G. Gicheha ◽  
F.K. Njonge ◽  
N Kiplangat

Indigenous cattle play a vital role in subsistence and livelihood of pastoral producers in Eritrea. In order to optimally utilize and conserve these valuable indigenous cattle genetic resources, the need to carry out an inventory of their genetic diversity was recognized. This study assessed the genetic variability, population structure and admixture of the indigenous cattle populations (ICPs) of Eritrea using a genotype by sequencing (GBS) approach. The authors genotyped 188 animals, which were sampled from 27 cattle populations in three diverse agro-ecological zones (western lowlands, highlands and eastern lowlands). The genome-wide analysis results from this study revealed genetic diversity, population structure and admixture among the ICPs. Averages of the minor allele frequency (AF), observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (FIS) were 0.157, 0.255, 0.218, and -0.089, respectively. Nei’s genetic distance (Ds) between populations ranged from 0.24 to 0.27. Mean population differentiation (FST) ranged from 0.01 to 0.30. Analysis of molecular variance revealed high genetic variation between the populations. Principal component analysis and the distance-based unweighted pair group method and arithmetic mean analyses revealed weak substructure among the populations, separating them into three genetic clusters. However, multi-locus clustering had the lowest cross-validation error when two genetically distinct groups were modelled. This information about genetic diversity and population structure of Eritrean ICPs provided a basis for establishing their conservation and genetic improvement programmes. Keywords: genetic variability, molecular characterization, population differentiation


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009665
Author(s):  
Olivier François ◽  
Clément Gain

Wright’s inbreeding coefficient, FST, is a fundamental measure in population genetics. Assuming a predefined population subdivision, this statistic is classically used to evaluate population structure at a given genomic locus. With large numbers of loci, unsupervised approaches such as principal component analysis (PCA) have, however, become prominent in recent analyses of population structure. In this study, we describe the relationships between Wright’s inbreeding coefficients and PCA for a model of K discrete populations. Our theory provides an equivalent definition of FST based on the decomposition of the genotype matrix into between and within-population matrices. The average value of Wright’s FST over all loci included in the genotype matrix can be obtained from the PCA of the between-population matrix. Assuming that a separation condition is fulfilled and for reasonably large data sets, this value of FST approximates the proportion of genetic variation explained by the first (K − 1) principal components accurately. The new definition of FST is useful for computing inbreeding coefficients from surrogate genotypes, for example, obtained after correction of experimental artifacts or after removing adaptive genetic variation associated with environmental variables. The relationships between inbreeding coefficients and the spectrum of the genotype matrix not only allow interpretations of PCA results in terms of population genetic concepts but extend those concepts to population genetic analyses accounting for temporal, geographical and environmental contexts.


2021 ◽  
Vol 6 (3) ◽  
pp. 64800
Author(s):  
Bahana Aditya Adnan ◽  
Suwarno Hadisusanto ◽  
Purnomo Purnomo

Rafflesia patma is an endemic plant of Pangandaran, West Java which is protected because of its rare status. The purpose of this research is to study the population structure, distribution patterns, and the effect of the physical environment of abundance R. patma in Pananjung Pangandaran Nature Reserve, West Java. The method used in this research was a survey method with a purposive sampling technique. Sampling was conducted using quadrat plots. The population pattern distribution was defined by a standardized Morisita index, and the analysis of abiotic environmental factors was determined by Principal Component Analysis (PCA) using PAST3. The results showed that there were 114 R. patma individuals scattered in several research areas in Pananjung Pangandaran Nature Reserve, they were Gua Parat (3 individuals), Cilegon (13 individuals), Pasir Putih (12 individuals), Badeto (48 individuals), and Curug Leutik (38 individuals). The distribution pattern of R. patma in Pananjung Pangandaran Nature Reserve was clustered with the Morisita index value (Id) > 1. Based on the PCA analysis, results that support the classification of the cluster analysis were obtained. Based on four abiotic environmental conditions analyzed, the most dominant character in influencing the distribution patterns and population structure of R. patma is light intensity. 


2022 ◽  
Vol 147 (1) ◽  
pp. 1-6
Author(s):  
Chunxian Chen ◽  
William R. Okie

Peach (Prunus persica) cultivars maintained at the U.S. Department of Agriculture program at Byron, GA, have never been characterized with any molecular markers. In this study, 20 microsatellite markers were used to genotype 112 cultivars and the data were analyzed to discern their population structure and phylogenetic relationships. STRUCTURE simulations revealed four K clusters and broad genetic admixture among the cultivars. Principal coordinate analysis (PCoA) showed the cultivar groups from western, northeastern, and southeastern U.S. states were adjacent to each other except cultivars from Michigan (close to most southeastern state groups) and Florida (most distant from the other groups). Principal component analysis (PCA) showed that these cultivars had no obvious PCA partitioning boundaries. The intertwined distribution in both PCoA and PCA partitions suggested many of them were genetically closely related to each other largely because most shared same ancestral parentages. Most pairwise distance means within and between the cultivar groups were relatively low, suggesting close phylogenetic relations among those cultivars, as were demonstrated in the phylogenetic tree. Limiting factors and perspectives relevant to peach breeding are discussed.


Sign in / Sign up

Export Citation Format

Share Document