scholarly journals Local adaptation can cause both peaks and troughs in nucleotide diversity within populations

2020 ◽  
Author(s):  
Russ J. Jasper ◽  
Sam Yeaman

ABSTRACTLocal adaptation is expected to cause high FST at sites linked to a causal locus, however this pattern can also be driven by background or positive selection. Within-population nucleotide diversity could provide a means to differentiate these scenarios, as both background and positive selection deplete diversity, whereas some theoretical studies have shown that local adaptation increases it. However, it is unclear whether such theoretical predictions generalize to more complicated models. Here, we explore how local adaptation shapes genome-wide patterns in nucleotide diversity and FST, extending previous work to study the effect of variable degrees of polygenicity and genotypic redundancy in an adaptive trait, and different levels of population structure. We show that local adaptation produces two very different patterns depending on the relative strengths of migration and selection, either markedly decreasing or increasing within-population diversity at linked sites at equilibrium. When migration is low, regions of depleted diversity can extend large distances from the causal locus, with substantially more diversity eroded than expected with background selection. With higher migration, peaks occur over much smaller genomic distances but with much larger magnitude changes in diversity. In spatially extended clinal environments both patterns can be found within a single species, with increases in diversity at the center of the range and decreases towards the periphery. Our results demonstrate that there is no universal diagnostic signature of local adaptation based on nucleotide diversity, however, given that neither background nor positive selection inflate diversity, when peaks are found they strongly suggest local adaptation.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Efim A. Brener ◽  
Eran Bouchbinder

AbstractA widespread framework for understanding frictional rupture, such as earthquakes along geological faults, invokes an analogy to ordinary cracks. A distinct feature of ordinary cracks is that their near edge fields are characterized by a square root singularity, which is intimately related to the existence of strict dissipation-related lengthscale separation and edge-localized energy balance. Yet, the interrelations between the singularity order, lengthscale separation and edge-localized energy balance in frictional rupture are not fully understood, even in physical situations in which the conventional square root singularity remains approximately valid. Here we develop a macroscopic theory that shows that the generic rate-dependent nature of friction leads to deviations from the conventional singularity, and that even if this deviation is small, significant non-edge-localized rupture-related dissipation emerges. The physical origin of the latter, which is predicted to vanish identically in the crack analogy, is the breakdown of scale separation that leads an accumulated spatially-extended dissipation, involving macroscopic scales. The non-edge-localized rupture-related dissipation is also predicted to be position dependent. The theoretical predictions are quantitatively supported by available numerical results, and their possible implications for earthquake physics are discussed.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Hai-Mo Shen ◽  
Shen-Bo Chen ◽  
Yue Wang ◽  
Bin Xu ◽  
Eniola Michael Abe ◽  
...  

2022 ◽  
Author(s):  
Tiago da Silva Ribeiro ◽  
José A Galván ◽  
John E Pool

Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and nearby sites. Selective sweeps come in different forms, and depending on the initial and final frequencies of a favored variant, very different patterns of genetic variation may be produced. If local selection favors an existing variant that had already recombined onto multiple genetic backgrounds, then the width of elevated genetic differentiation (high FST) may be too narrow to detect using a typical windowed genome scan, even if the targeted variant becomes highly differentiated. We therefore used a simulation approach to investigate the power of SNP-level FST (specifically, the maximum SNP FST value within a window) to detect diverse scenarios of local adaptation, and compared it against whole-window FST and the Comparative Haplotype Identity statistic. We found that SNP FST had superior power to detect complete or mostly complete soft sweeps, but lesser power than window-wide statistics to detect partial hard sweeps. To investigate the relative enrichment and nature of SNP FST outliers from real data, we applied the two FST statistics to a panel of Drosophila melanogaster populations. We found that SNP FST had a genome-wide enrichment of outliers compared to demographic expectations, and though it yielded a lesser enrichment than window FST, it detected mostly unique outlier genes and functional categories. Our results suggest that SNP FST is highly complementary to typical window-based approaches for detecting local adaptation, and merits inclusion in future genome scans and methodologies.


2017 ◽  
Author(s):  
Kaixiong Ye ◽  
Feng Gao ◽  
David Wang ◽  
Ofer Bar-Yosef ◽  
Alon Keinan

AbstractFatty acid desaturase (FADS) genes encode rate-limiting enzymes for the biosynthesis of omega-6 and omega-3 long chain polyunsaturated fatty acids (LCPUFAs). This biosynthesis is essential for individuals subsisting on LCPUFAs-poor, plant-based diets. Positive selection on FADS genes has been reported in multiple populations, but its presence and pattern in Europeans remain elusive. Here, with analyses of ancient and modern DNA, we demonstrated that positive selection acted on the same FADS variants both before and after the advent of farming in Europe, but on opposite alleles. Selection in recent farmers also varied geographically, with the strongest signal in Southern Europe. These varying selection patterns concur with anthropological evidence of differences in diets, and with the association of recently-adaptive alleles with higher FADS1 expression and enhanced LCPUFAs biosynthesis. Genome-wide association studies revealed associations of recently-adaptive alleles with not only LCPUFAs, but also other lipids and decreased risk of several inflammation-related diseases.


2021 ◽  
Vol 288 (1942) ◽  
pp. 20202483
Author(s):  
Anna M. O’Brien ◽  
Chandra N. Jack ◽  
Maren L. Friesen ◽  
Megan E. Frederickson

Evolutionary biologists typically envision a trait’s genetic basis and fitness effects occurring within a single species. However, traits can be determined by and have fitness consequences for interacting species, thus evolving in multiple genomes. This is especially likely in mutualisms, where species exchange fitness benefits and can associate over long periods of time. Partners may experience evolutionary conflict over the value of a multi-genomic trait, but such conflicts may be ameliorated by mutualism’s positive fitness feedbacks. Here, we develop a simulation model of a host–microbe mutualism to explore the evolution of a multi-genomic trait. Coevolutionary outcomes depend on whether hosts and microbes have similar or different optimal trait values, strengths of selection and fitness feedbacks. We show that genome-wide association studies can map joint traits to loci in multiple genomes and describe how fitness conflict and fitness feedback generate different multi-genomic architectures with distinct signals around segregating loci. Partner fitnesses can be positively correlated even when partners are in conflict over the value of a multi-genomic trait, and conflict can generate strong mutualistic dependency. While fitness alignment facilitates rapid adaptation to a new optimum, conflict maintains genetic variation and evolvability, with implications for applied microbiome science.


2019 ◽  
Author(s):  
Lewis G. Spurgin ◽  
Mirte Bosse ◽  
Frank Adriaensen ◽  
Tamer Albayrak ◽  
Christos Barboutis ◽  
...  

AbstractA major aim of evolutionary biology is to understand why patterns of genomic diversity vary among populations and species. Large-scale genomic studies of widespread species are useful for studying how the environment and demographic history shape patterns of genomic divergence, and with the continually decreasing cost of sequencing and genotyping, such studies are now becoming feasible. Here, we carry out one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning almost the entire geographic range of the European great tit subspecies. We found that genome-wide variation was consistent with a recent colonisation across Europe from a single refugium in South-East Europe, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear “islands of differentiation” even among populations with very low levels of genome-wide differentiation. Low local recombination rate in the genome was a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination is a key driver of highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, most likely as a result of recent directional selection at the range edges of this species. Haplotype-based measures of selection were also related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. These regions under positive selection contained candidate genes associated with morphology, thermal adaptation and colouration, providing promising avenues for future investigation. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into evolution.


2020 ◽  
Author(s):  
Yuxin Pan ◽  
Jinpeng Wang ◽  
Zhenyi Wang ◽  
Hengwei Liu ◽  
Lan Zhang ◽  
...  

Abstract Background: UDP-glucuronate decarboxylase (UXS) is an enzyme in plants and participates in cell wall noncellulose. Previous research suggested that cotton GhUXS gene regulated the conversion of non-cellulosic polysaccharides and modulates their composition in plant cell walls, showing its possible cellular function determining the quality of cotton fibers. Here, we performed evolutionary, phylogenetic, and expressional analysis of UXS genes from cottons and other selected plants. Results: By exploring the sequenced cotton genomes, we identified 10, 10, 18, and 20 UXSs genes in Gossypium raimondii , Gossypium arboretum , Gossypium hirsutum and Gossypium barbadense , and retrieved their homologs from other representative plants, including 5 dicots, 1 monocot, 5 green alga, 1 moss, and 1 lycophyte. Phylogenetic analysis suggested that UXS genes could be divided into four subgroups and members within each subgroup shared similar exon-intron structures, motif and subcellular location. Notably, gene colinearity information indicates 100% constructed trees to have aberrant topology, and helps determine and use corrected phylogeny. In spite of conservative nature of UXS, during the evolution of Gossypium , UXS genes were subjected to significant positive selection on key evolutionary nodes. Expression profiles derived from RNA-seq data showed distinct expression patterns of GhUXS genes in various tissues and different development. Most of GhUXS gene expressed highly at 10, 20 and 25 DPA (day post anthesis) of fibers. Real-time quantitative PCR analysis GhUXS genes expressed highly at 20 DPA or 25 DPA. Conclusions: UXS is relatively conserved in plants and significant positive selection affects cotton UXS evolution. The comparative genome-wide identification and expression profiling would lay an important foundation to understanding the biological functions of UXS gene family in cotton species and other plants.


2020 ◽  
Vol 117 (8) ◽  
pp. 4243-4251 ◽  
Author(s):  
Emily S. Bellis ◽  
Elizabeth A. Kelly ◽  
Claire M. Lorts ◽  
Huirong Gao ◽  
Victoria L. DeLeo ◽  
...  

Host–parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR–Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.


Sign in / Sign up

Export Citation Format

Share Document