scholarly journals A physicochemical model of odor sampling

2020 ◽  
Author(s):  
Mitchell E. Gronowitz ◽  
Adam Liu ◽  
Thomas A. Cleland

AbstractWe present a general physicochemical sampling model for olfaction, based on established pharmacological laws, in which arbitrary combinations of odorant ligands and receptors can be generated and their individual and collective effects on odor representations and olfactory performance measured. Individual odor ligands exhibit receptor-specific affinities and efficacies; that is, they may bind strongly or weakly to a given receptor, and can act as strong agonists, weak agonists, partial agonists, or antagonists. Ligands interacting with common receptors compete with one another for dwell time; these competitive interactions appropriately simulate the degeneracy that fundamentally defines the capacities and limitations of odorant sampling. The outcome of these competing ligand-receptor interactions yields a pattern of receptor activation levels, thereafter mapped to glomerular presynaptic activation levels based on the convergence of sensory neuron axons. The metric of greatest interest is the mean discrimination sensitivity, a measure of how effectively the olfactory system at this level is able to recognize a small change in the physicochemical quality of a stimulus.This model presents several significant outcomes, both expected and surprising. First, adding additional receptors reliably improves the system’s discrimination sensitivity. Second, in contrast, adding additional ligands to an odor scene initially can improve discrimination sensitivity, but eventually will reduce it as the number of ligands increases. Third, the presence of antagonistic ligand-receptor interactions produced clear benefits for sensory system performance, generating higher absolute discrimination sensitivities and increasing the numbers of competing ligands that could be present before discrimination sensitivity began to be impaired. Finally, the model correctly reflects and explains the modest reduction in odor discrimination sensitivity exhibited by transgenic mice in which the specificity of glomerular targeting by primary olfactory neurons is disrupted.Author SummaryWe understand most sensory systems by comparing the responses of the system against objective external physical measurements. For example, we know that our ability to distinguish small changes in color is greater for some colors than for others, and that we can distinguish sounds more acutely when they are within the range of pitches used for speech. Similar principles presumably apply to the sense of smell, but odorous chemicals are harder to physically quantify than light or sound because they cannot be organized in terms of a straightforward physical variable like wavelength or frequency. That said, the physical properties of interactions between chemicals and cellular receptors (such as those in the olfactory system) are well understood. What we lack is a systematic framework in which these pharmacological principles can be organized to study odor sampling in the way that we have long studied visual and auditory sampling. We here propose and describe such a framework for odor sampling, and show that it successfully duplicates some established but unexplained experimental results.

2021 ◽  
Vol 17 (6) ◽  
pp. e1009054
Author(s):  
Mitchell E. Gronowitz ◽  
Adam Liu ◽  
Qiang Qiu ◽  
C. Ron Yu ◽  
Thomas A. Cleland

We present a general physicochemical sampling model for olfaction, based on established pharmacological laws, in which arbitrary combinations of odorant ligands and receptors can be generated and their individual and collective effects on odor representations and olfactory performance measured. Individual odor ligands exhibit receptor-specific affinities and efficacies; that is, they may bind strongly or weakly to a given receptor, and can act as strong agonists, weak agonists, partial agonists, or antagonists. Ligands interacting with common receptors compete with one another for dwell time; these competitive interactions appropriately simulate the degeneracy that fundamentally defines the capacities and limitations of odorant sampling. The outcome of these competing ligand-receptor interactions yields a pattern of receptor activation levels, thereafter mapped to glomerular presynaptic activation levels based on the convergence of sensory neuron axons. The metric of greatest interest is the mean discrimination sensitivity, a measure of how effectively the olfactory system at this level is able to recognize a small change in the physicochemical quality of a stimulus. This model presents several significant outcomes, both expected and surprising. First, adding additional receptors reliably improves the system’s discrimination sensitivity. Second, in contrast, adding additional ligands to an odor scene initially can improve discrimination sensitivity, but eventually will reduce it as the number of ligands increases. Third, the presence of antagonistic ligand-receptor interactions produced clear benefits for sensory system performance, generating higher absolute discrimination sensitivities and increasing the numbers of competing ligands that could be present before discrimination sensitivity began to be impaired. Finally, the model correctly reflects and explains the modest reduction in odor discrimination sensitivity exhibited by transgenic mice in which the specificity of glomerular targeting by primary olfactory neurons is partially disrupted.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7531
Author(s):  
Jaromír Klarák ◽  
Ivan Kuric ◽  
Ivan Zajačko ◽  
Vladimír Bulej ◽  
Vladimír Tlach ◽  
...  

Inspection systems are currently an evolving field in the industry. The main goal is to provide a picture of the quality of intermediates and products in the production process. The most widespread sensory system is camera equipment. This article describes the implementation of camera devices for checking the location of the upper on the shoe last. The next part of the article deals with the analysis of the application of laser sensors in this task. The results point to the clear advantages of laser sensors in the inspection task of placing the uppers on the shoe’s last. The proposed method defined the resolution of laser scanners according to the type of scanned surface, where the resolution of point cloud ranged from 0.16 to 0.5 mm per point based on equations representing specific points approximated to polynomial regression in specific places, which are defined in this article. Next, two inspection systems were described, where one included further development in the field of automation and industry 4.0 and with a high perspective of development into the future. The main aim of this work is to conduct analyses of sensory systems for inspection systems and their possibilities for further work mainly based on the resolution and quality of obtained data. For instance, dependency on scanning complex surfaces and the achieved resolution of scanned surfaces.


2014 ◽  
Vol 3 (2) ◽  
pp. 85-92 ◽  
Author(s):  
A J Varewijck ◽  
A J van der Lely ◽  
S J C M M Neggers ◽  
S W J Lamberts ◽  
L J Hofland ◽  
...  

The value of measuring IGF1 bioactivity in active acromegaly is unknown. Soluble Klotho (S-Klotho) level is elevated in active acromegaly and it has been suggested that S-Klotho can inhibit activation of the IGF1 receptor (IGF1R). A cross-sectional study was carried out in 15 patients with active acromegaly based on clinical presentation, unsuppressed GH during an oral glucose tolerance test, and elevated total IGF1 levels (>+2 s.d.). Total IGF1 was measured by immunoassay, IGF1 bioactivity by the IGF1R kinase receptor activation assay and S-Klotho by an ELISA. Quality of Life (QoL) was assessed by Acromegaly QoL (AcroQoL) Questionnaire and Short-Form-36 Health Survey Questionnaire (SF-36). Out of 15 patients, nine had IGF1 bioactivity values within the reference range. S-Klotho was higher in active acromegaly compared with controls. Age-adjusted S-Klotho was significantly related to IGF1 bioactivity (r=0.75, P=0.002) and to total IGF1 (r=0.62, P=0.02). IGF1 bioactivity and total IGF1 were inversely related to the physical component summary of the SF-36 (r=−0.78, P=0.002 vs r=−0.60, P=0.03). Moreover, IGF1 bioactivity, but not total IGF1, was significantly inversely related to the physical dimension of the AcroQoL Questionnaire (r=−0.60, P=0.02 vs r=−0.37, P=0.19). In contrast to total IGF1, IGF1 bioactivity was within the reference range in a considerable number of subjects with active acromegaly. Elevated S-Klotho levels may have reduced IGF1 bioactivity. Moreover, IGF1 bioactivity was more strongly related to physical measures of QoL than total IGF1, suggesting that IGF1 bioactivity may better reflect physical limitations perceived in active acromegaly.


Endocrinology ◽  
2010 ◽  
Vol 151 (8) ◽  
pp. 3773-3782 ◽  
Author(s):  
Koji Yakabi ◽  
Chiharu Sadakane ◽  
Masamichi Noguchi ◽  
Shino Ohno ◽  
Shoki Ro ◽  
...  

Although chemotherapy with cisplatin is a widely used and effective cancer treatment, the undesirable gastrointestinal side effects associated with it, such as nausea, vomiting, and anorexia, markedly decrease patients’ quality of life. To elucidate the mechanism underlying chemotherapy-induced anorexia, focusing on the hypothalamic ghrelin secretion-anorexia association, we measured hypothalamic ghrelin secretion in fasted and cisplatin-treated rats. Hypothalamic ghrelin secretion changes after vagotomy or administration of cisplatin. Cisplatin + rikkunshito, a serotonin 2C receptor antagonist or serotonin 3 receptor antagonist, was investigated. The effects of intracerebroventricular (icv) administration of ghrelin or the serotonin 2C receptor antagonist SB242084 on food intake were also evaluated in cisplatin-treated rats. Hypothalamic ghrelin secretion significantly increased in 24-h-fasted rats compared to freely fed rats and was markedly reduced 24 and 48 h after cisplatin treatment in cisplatin-treated rats compared to saline-treated rats, although their plasma ghrelin levels were comparable. In cisplatin-treated rats, icv ghrelin administration reversed the decrease in food intake, vagotomy partially restored hypothalamic ghrelin secretion, and hypothalamic serotonin 2C receptor mRNA expression increased significantly. Administration of rikkunshito (an endogenous ghrelin enhancer) or a serotonin 2C receptor antagonist reversed the decrease in hypothalamic ghrelin secretion and food intake 24 h after cisplatin treatment. Cisplatin-induced anorexia is mediated through reduced hypothalamic ghrelin secretion. Cerebral serotonin 2C receptor activation partially induces decrease in hypothalamic ghrelin secretion, and rikkunshito suppresses cisplatin-induced anorexia by enhancing this secretion.


2019 ◽  
Vol 11 (3) ◽  
pp. 195
Author(s):  
Ami Yamasato ◽  
Mayu Kondo ◽  
Shunya Hoshino ◽  
Jun Kikuchi ◽  
Shigeki Okino ◽  
...  

Background: Several studies on the effects of music on sleep disorders have demonstrated that music listening can improve sleep quality in patients with sleep disorders. To our knowledge, nevertheless, none of them have elucidated the characteristics of such music itself.Objective: The purpose of the present study was to elucidate the characteristics of the types of music that improve sleep quality.Methods: In twenty five tracks used in the previous study, we calculated four analysis indicators: scaling exponent of the spectrum of melody's zero-crossings, redundancy of note values, density of notes and tempo.Results: The characteristics of music to improve sleep quality were slow tempo, small change of rhythm, and moderate pitch variation of melody. Based on the results derived from cluster analysis, the music pieces studied were largely categorized into 3 groups. A comparison of these 3 groups showed no significant differences with respect to the scaling exponent of the melody and the density of notes, whereas it showed significant differences with respect to the redundancy of note values and tempo.Conclusions: Our study revealed several characteristics of the types of music that improve sleep quality. The identification of these characteristics contributes to providing personalized music therapy to patients.


Cephalalgia ◽  
2012 ◽  
Vol 33 (4) ◽  
pp. 256-265 ◽  
Author(s):  
A Stankewitz ◽  
E Schulz ◽  
A May

Introduction: Using functional magnetic resonance imaging (fMRI), we aimed to explore the habituation behaviour to trigemino-nociceptive as well as olfactory stimuli in migraine patients. We exclusively focussed on intrasessional behavioural rating patterns and the related blood oxygen level dependent (BOLD) signal changes. Findings: We observed that groups significantly differ in the time course of pain intensity ratings during the stimulation session: whereas interictal migraineurs sensitized (increasing pain ratings), control subjects habituated (decreasing pain ratings). Pain ratings of ictal patients remained unchanged. This behaviour is accompanied by a similar time course of neuronal activity in the bilateral anterior insula, in the middle cingulate cortex and in the thalamus. In these areas, the brain activity increased in migraineurs but decreased in the control group during the session. In contrast to these findings, the rating patterns for the olfactory stimuli (rose odour) did not differ between patients and controls and a gradual decrease of perceived stimulus intensity was found in all three groups. This stimulus specific response may occur because the olfactory system is the only sensory system not passing the thalamus. Conclusion: Our data suggest that impaired habituation in functional brain systems in migraine is fundamental only to specific modalities including the trigemino-nociceptive, but, at least, excluding the olfactory system. Our findings further suggest that there is no single neuronal modulator responsible for the altered rating pattern in migraineurs.


2014 ◽  
Vol 1057 ◽  
pp. 215-222 ◽  
Author(s):  
Dušan Dlhý ◽  
Peter Tomašovič

The structural complexity of a door causes difficulties in the description of its behavior from an acoustical point of view. In many cases, even a small change can cause a big difference in its sound-isolating properties. To determine the acoustical quality of a door, it is important to perform laboratory measurements of the door structure and door frame, the gaps including. A mathematical analysis based on experimental measurements of the sound reduction index of several door constructions was used to determine the acoustical door categories. The equations for calculating the sound reduction index, which were introduced in this paper, should help in the design of a suitable door from an acoustical point of view.


1986 ◽  
Vol 40 (3) ◽  
pp. 303-310 ◽  
Author(s):  
M. Martens ◽  
H. Martens

Rapid, precise, and relevant methods for predicting the sensory quality of frozen peas were sought. Pea batches chosen to span many different types of quality variations were analyzed by a consumer test, sensory laboratory analysis, and traditional chemical and physical measurements as well as by near-infrared reflectance analysis (NIR). Partial least-squares (PLS) regression was used to reveal the relationships between the different types of measurements. A noise-compensated value, relative ability of prediction (RAP), was used to express the degree of prediction (1.0 = perfect prediction). NIR was found to predict the sensory texture variables (RAP = 0.79) better than the flavor variables (RAP = 0.67). Average consumer preference was less well predicted (RAP = 0.48) by NIR. This was interpretable since NIR gave a better description of the chemical and physical methods relevant for texture (e.g., dry matter (RAP = 0.93)) than the flavor-related variables (e.g., sucrose (RAP = 0.45)) that apparently determine the consumer preference. However, NIR was found to describe the average variation in sensory quality better than the traditional tenderometer value (TV). The highest prediction of sensory variables was obtained by a combination of NIR, TV, and chemical measurements (RAP = 0.87 and 0.80 for texture and flavor variables, respectively). We discuss the predictive validity and the meaning of the present predictive abilities in practice, leading to a conclusion that NIR has a potential for predicting the sensory quality of peas.


1977 ◽  
Vol 21 (5) ◽  
pp. 401-405
Author(s):  
Charles P. Greening

The nature of the man/machine interface in the color television system as used for home entertainment is explored and described. The problem of predicting picture quality is examined from the point of view of the receiver designer/manufacturer. The relevance of existing performance data, perference data, and physical measurements of image characteristics to the picture quality question is examined. Existing models and part-models are described, and the characteristics of a more complete, but hypothetical model are outlined. Fundamental limitations in the predictability of picture quality are described. These limitations arise in large part from the fact that many important factors in picture quality, such as quality of the broadcast signal, viewing conditions, and personal preferences are not controllable by the receiver manufacturer.


2021 ◽  
Author(s):  
Sina B. Kirchhofer ◽  
Victor Jun Yu Lim ◽  
Julia G. Ruland ◽  
Peter Kolb ◽  
Moritz Bünemann

AbstractThe µ opioid receptor (MOR) is the key target for analgesia, but the application of opioids is accompanied by several issues. There is a wide range of opioid analgesics, differing in their chemical structure and their properties in receptor activation and subsequent effects. A better understanding of ligand-receptor interactions and resulting effects is important. Here, we calculated the respective binding modes for several opioids and analyzed fingerprints of ligand-receptor interactions. We further corroborated the binding modes experimentally by cellular assays. As ligand-induced modulation of activity due to changes in membrane potential was displayed by MOR, we further analyzed the effects of voltage sensitivity of this receptor. With a combined in silico and in vitro approach, we defined discriminating interaction patterns for the ligand-specific voltage sensitivity. With this, we present new insights for interactions likely in ligand recognition and their specific effects on activation of the MOR.


Sign in / Sign up

Export Citation Format

Share Document