scholarly journals Modelling COVID-19 using the Fundamentals of Fluid Dynamics

Author(s):  
Harris Sajjad Rabbani ◽  
Kofi Osei-Bonsu ◽  
Peter Kwame Osei-Bonsu ◽  
Thomas Daniel Seers

As of 21st May 2020, there have been 4.89M confirmed cases worldwide and over 323,000 deaths of people who have tested positive for SARS-CoV-2. The outbreak of COVID-19, has not only caused widespread morbidity and mortality, but has also led to a catastrophic breakdown in the global economy and unprecedented social disruption. To lessen the global health consequences of COVID-19, sweeping COVID-19 lockdown and quarantine measures have been imposed within many nations. These measures have significantly impacted the world’s economy and in many cases has led to the loss of livelihood. Mathematical modeling of pandemics is of critical importance to understand the unfolding of transmission events and to formulate control measures. In this research letter, we have introduced a novel approach to forecasting epidemics like COVID-19. The proposed mathematical model stems from the fundamental principles of fluid dynamics, and can be utilized to make projections of the number of infected people. This unique mathematical model can be beneficial for predicting and designing potential strategies to mitigate the spread and impact of pandemics.

Author(s):  
Emmanuel Hakizimana ◽  
Jean Marie Ntaganda

This research paper investigated the dynamics of malaria transmission in Rwanda using the nonlinear forces of infections which are included in SEIR-SEI mathematical model for human and mosquito populations. The mathematical modeling of malaria studies the interaction among the human and mosquito populations in controlling malaria transmission and eventually eliminating malaria infection. This work investigates the optimal control strategies for minimizing the rate of malaria transmission by applying three control variables through Caputo fractional derivative. The optimal control problems for malaria model found the control parameters which minimize infection. The numerical simulation showed that the number of exposed and infected people and mosquito population are decreased due to the control strategies. Finally, this work found out that the transmission of malaria in Rwanda can be minimized by using the combination of controls like Insecticide Treated bed Nets (ITNs), Indoor Residual Spray (IRS) and Artemisinin based Combination Therapies (ACTs).


Author(s):  
Valery А. Gruzdev ◽  
◽  
Georgy V. Mosolov ◽  
Ekaterina A. Sabayda ◽  
◽  
...  

In order to determine the possibility of using the method of mathematical modeling for making long-term forecasts of channel deformations of trunk line underwater crossing (TLUC) through water obstacles, a methodology for performing and analyzing the results of mathematical modeling of channel deformations in the TLUC zone across the Kuban River is considered. Within the framework of the work, the following tasks were solved: 1) the format and composition of the initial data necessary for mathematical modeling were determined; 2) the procedure for assigning the boundaries of the computational domain of the model was considered, the computational domain was broken down into the computational grid, the zoning of the computational domain was performed by the value of the roughness coefficient; 3) the analysis of the results of modeling the water flow was carried out without taking the bottom deformations into account, as well as modeling the bottom deformations, the specifics of the verification and calibration calculations were determined to build a reliable mathematical model; 4) considered the possibility of using the method of mathematical modeling to check the stability of the bottom in the area of TLUC in the presence of man-made dumping or protective structure. It has been established that modeling the flow hydraulics and structure of currents, making short-term forecasts of local high-altitude reshaping of the bottom, determining the tendencies of erosion and accumulation of sediments upstream and downstream of protective structures are applicable for predicting channel deformations in the zone of the TLUC. In all these cases, it is mandatory to have materials from engineering-hydro-meteorological and engineering-geological surveys in an amount sufficient to compile a reliable mathematical model.


2017 ◽  
Vol 992 (4) ◽  
pp. 32-38 ◽  
Author(s):  
E.G. Voronin

The article opens a cycle of three consecutive publications dedicated to the phenomenon of the displacement of the same points in overlapping scans obtained adjacent CCD matrices with opto-electronic imagery. This phenomenon was noticed by other authors, but the proposed explanation for the origin of displacements and the resulting estimates are insufficient, and developed their solutions seem controversial from the point of view of recovery of the measuring accuracy of opticalelectronic space images, determined by the physical laws of their formation. In the first article the mathematical modeling of the expected displacements based on the design features of a scanning opto-electronic imaging equipment. It is shown that actual bias cannot be forecast, because they include additional terms, which may be gross, systematic and random values. The proposed algorithm for computing the most probable values of the additional displacement and ways to address some of the systematic components of these displacements in a mathematical model of optical-electronic remote sensing.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 140
Author(s):  
Sun-Weng Huang ◽  
James J. H. Liou ◽  
Shih-Hsiung Cheng ◽  
William Tang ◽  
Jessica. C. Y. Ma ◽  
...  

The global economy has been hit by the unexpected COVID-19 outbreak, and foreign investment has been seen as one of the most important tools to boost the economy. However, in the highly uncertain post-epidemic era, determining how to attract foreign investment is the key to revitalizing the economy. What are the important factors for governments to attract investment, and how to improve them? This will be an important decision in the post-epidemic era. Therefore, this study develops a novel decision-making model to explore the key factors in attracting foreign investment. The model first uses fuzzy Delphi to explore the key factors of attracting foreign investment in the post-epidemic era, and then uses DEMATEL to construct the causal relationships among these factors. To overcome the uncertainty of various information sources and inconsistent messages from decision-makers, this study combined neutrosophic set theory to conduct quantitative analysis. The results of the study show that the model is suitable for analyzing the key factors of investment attraction in the post-epidemic period. Based on the results of the study, we also propose strategies that will help the relevant policy-making departments to understand the root causes of the problem and to formulate appropriate investment strategies in advance. In addition, the model is also used for comparative analysis, which reveals that this novel approach can integrate more incomplete information and present expert opinions in a more objective way.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2020 ◽  
Vol 16 (4) ◽  
pp. 135-170
Author(s):  
Eva Gupta ◽  
Nand Jee Kanu ◽  
Amartya Munot ◽  
Venkateshwara Sutar ◽  
Umesh Kumar Vates ◽  
...  

2016 ◽  
Vol 821 ◽  
pp. 288-294 ◽  
Author(s):  
George Juraj Stein ◽  
Peter Tobolka ◽  
Rudolf Chmúrny

A novel approach to vibration attenuation, based on the eddy current principle, is described. The combined effects of all magnetic forces acting in the oscillatory system attenuate frame vibrations and, concurrently, decrease the damped natural frequency. A mathematical model of the forces balance in the oscillatory system was derived before. Some experimental results from a mock-up machine frame excited by an asynchronous motor are presented.


Author(s):  
D.V. Lipatov ◽  
◽  
S.A. Skladchikov ◽  
N.P. Savenkova ◽  
V.V. Novoderezkin ◽  
...  

Background. The avalanche-like growth of intravitreal injections in the world has significantly increased interest in the hemodynamics of the processes that occur in the eye when a drug is injected into the vitreous cavity. Every year, the number of intravitreally used drugs and promising areas in which they can be used is growing. This also applies to the creation of new combined medicines and the development of drugs with a long-term therapeutic effect. Aims. Create mathematical model of eyeball to evaluate the movement of the drug substance in it; to estimate the time of the drug's presence in the eye cavity before its complete removal, to characterize the ways of its removal from the eye cavity; to assess the significance of posterior vitreous detachment during the time when the drug is present in the eye cavity; to evaluate the effect on the hydrodynamics of the depth of drug administration. Results. When the drug is administered closer to the center of the eyeball, its residence time increases in comparison with the parietal administration. With a complete posterior detachment of the vitreous body, the time of finding the drug in the eye is prolonged compared to its absence. The obtained results of mathematical modeling of the movement of the drug administered intravitreally cannot be mechanically transferred to the human eye, due to the more complex structure of the latter. Key words: intravitreal injections, vitreous body, mathematic computing.


2021 ◽  
Vol 3 (102) ◽  
pp. 55-67
Author(s):  
VARVARA E. RUMYANTSEVA ◽  
SVETLANA A. LOGINOVA ◽  
NATALIA E. KARTSEVA

In the aquatic environment, biocorrosion is an important factor affecting the reliability and durability of concrete structures. The destruction of cement concretes during biological corrosion is determined by the processes of mass transfer. The article presents the development of a calculated mathematical model of liquid corrosion in cement concrete, taking into account the biogenic factor. For the first time, a model of mass transfer in an unbounded two-layer plate is considered in the form of differential equations of parabolic type in partial derivatives with boundary conditions of the second kind at the interface between concrete and liquid and of the fourth kind at the interface between concrete and biofilm. The results of a numerical experiment are presented to study the influence of the coefficients of mass conductivity and mass transfer on the kinetics and dynamics of the process.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


Sign in / Sign up

Export Citation Format

Share Document