scholarly journals Wild rice (O. latifolia) from natural ecosystems in the Pantanal region of Brazil: host to Fusarium incarnatum-equiseti species complex and highly contaminated by zearalenone

2020 ◽  
Author(s):  
Sabina Moser Tralamazza ◽  
Karim Cristina Piacentini ◽  
Geovana Dagostim Savi ◽  
Lorena Carnielli-Queiroz ◽  
Lívia de Carvalho Fontes ◽  
...  

AbstractWe assessed the mycobiota diversity and mycotoxin levels present in wild rice (Oryza latifolia) from the Pantanal region of Brazil; fundamental aspects of which are severely understudied as an edible plant from a natural ecosystem. We found a variety of fungal species contaminating the rice samples; the most frequent genera being Fusarium, Nigrospora and Cladosporium (35.9%, 26.1% and 15%, respectively). Within the Fusarium genus, the wild rice samples were mostly contaminated by the Fusarium incarnatum-equiseti species complex (FIESC) (80%) along with Fusarium fujikuroi species complex (20%). Phylogenetic analysis supported multiple FIESC species and gave strong support to the presence of two previously uncharacterized lineages within the complex (LN1 and LN2). Deoxynivalenol (DON) and zearalenone (ZEA) chemical analysis showed that most of the isolates were DON/ZEA producers and some were defined as high ZEA producers, displaying abundant ZEA levels over DON (over 19 times more). Suggesting that ZEA likely has a key adaptive role for FIESC in wild rice (O. latifolia). Mycotoxin determination in the rice samples revealed high frequency of ZEA, and 85% of rice samples had levels >100 μg/kg; the recommended limit set by regulatory agencies. DON was only detected in 5.2% of the samples. Our data shows that FIESC species are the main source of ZEA contamination in wild rice and the excessive levels of ZEA found in the rice samples raises considerable safety concerns regarding wild rice consumption by humans and animals.

Author(s):  
P.W. Crous ◽  
M. Hernández-Restrepo ◽  
A.L. van Iperen ◽  
M. Starink-Willemse ◽  
M. Sandoval-Denis ◽  
...  

Soil fungi play a crucial role in soil quality and fertility in being able to break down organic matter but are frequently also observed to play a role as important plant pathogens. As part of a Citizen Science Project initiated by the Westerdijk Fungal Biodiversity Institute and the Utrecht University Museum, which aimed to describe novel fungal species from Dutch garden soil, the diversity of fusarioid fungi (Fusarium and other fusarioid genera), which are members of Nectriaceae (Hypocreales) was investigated. Preliminary analyses of ITS and LSU sequences from more than 4 750 isolates obtained indicated that 109 strains belong to this generic complex. Based on multi-locus phylogenies of combinations of cmdA, tef1, rpb1, rpb2 and tub2 alignments, and morphological characteristics, 25 species were identified, namely 22 in Fusarium and three in Neocosmospora. Furthermore, two species were described as new namely F. vanleeuwenii from the Fusarium oxysporum species complex (FOSC), and F. wereldwijsianum from the Fusarium incarnatum-equiseti species complex (FIESC). Other species encountered in this study include in the FOSC: F. curvatum, F. nirenbergiae, F. oxysporum and three undescribed Fusarium spp.; in the FIESC: F. clavus, F. croceum, F. equiseti, F. flagelliforme and F. toxicum; Fusarium tricinctum species complex: F. flocciferum and F. torulosum; the Fusarium sambucinum species complex: F. culmorum and F. graminearum; the Fusarium redolens species complex: F. redolens; and the Fusarium fujikuroi species complex: F. verticillioides. Three species of Neocosmospora were encountered, namely N. solani, N. stercicola and N. tonkinensis. Although soil fungal diversity has been well studied in the Netherlands, this study revealed two new species, and eight new records: F. clavus, F. croceum, F. flagelliforme, F. odoratissimum, F. tardicrescens, F. toxicum, F. triseptatum and N. stercicola.


2021 ◽  
Vol 345 ◽  
pp. 109127
Author(s):  
Sabina Moser Tralamazza ◽  
Karim Cristina Piacentini ◽  
Geovana Dagostim Savi ◽  
Lorena Carnielli-Queiroz ◽  
Lívia de Carvalho Fontes ◽  
...  

2018 ◽  
Vol 100 (4) ◽  
pp. 745-766
Author(s):  
Lillian C. Woo

In the last fifty years, empirical evidence has shown that climate change and environmental degradation are largely the results of increased world population, economic development, and changes in cultural and social norms. Thus far we have been unable to slow or reverse the practices that continue to produce more air and water pollution, soil and ocean degradation, and ecosystem decline. This paper analyzes the negative anthropogenic impact on the ecosystem and proposes a new design solution: ecomimesis, which uses the natural ecosystem as its template to conserve, restore, and improve existing ecosystems. Through its nonintrusive strategies and designs, and its goal of preserving natural ecosystems and the earth, ecomimesis can become an integral part of stabilizing and rehabilitating our natural world at the same time that it addresses the needs of growing economies and populations around the world.


Phytotaxa ◽  
2017 ◽  
Vol 332 (1) ◽  
pp. 31 ◽  
Author(s):  
ZI-QIANG WU ◽  
SHAN SHEN ◽  
KAI-YUE LUO ◽  
ZHENG-HUI WANG ◽  
CHANG-LIN ZHAO

A new poroid wood-inhabiting fungal species, Atraporiella yunnanensis sp. nov., is proposed based on morphological and molecular characters. The species is characterized by cream pore surface when dry, which is easy to separate from substrate and very rapidly stained dark brown to black when bruised; hyphal system monomitic with generative hyphae hyaline to pale brown, thin-walled, unbranched, interwoven; slightly allantoid basidiospores, 2.2–3 × 0.8–1.5 µm. The internal transcribed spacer (ITS) and the large subunit (LSU) regions of nuclear ribosomal RNA gene sequences of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony and bayesian inference methods. The phylogenetic analysis based on molecular data of ITS+nLSU sequences showed that Atraporiella yunnanensis belonged to the residual polyporoid clade, formed a monophyletic lineage with a strong support (100% BS, 100% BP, 1.00 BPP) and was closely related to A. neotropica, and then grouped with other related genera: Antrodiella, Pouzaroporia, Steccherinum and Xanthoporus. Both morphological and molecular characters confirmed the placement of the new species in Atraporiella.


2002 ◽  
Vol 357 (1421) ◽  
pp. 709-718 ◽  
Author(s):  
Egbert Giles Leigh ◽  
Geerat Jacobus Vermeij

Three types of evidence suggest that natural ecosystems are organized for high productivity and diversity: (i) changes not previously experienced by a natural ecosystem, such as novel human disturbances, tend to diminish its productivity and/or diversity, just as ‘random’ changes in a machine designed for a function usually impair its execution of that function; (ii) humans strive to recreate properties of natural ecosystems to enhance productivity of artificial ones, as farmers try to recreate properties of natural soils in their fields; and (iii) productivity and diversity have increased during the Earth's history as a whole, and after every major biotic crisis. Natural selection results in ecosystems organized to maintain high productivity of organic matter and diversity of species, just as competition among individuals in Adam Smith's ideal economy favours high production of wealth and diversity of occupations. In nature, poorly exploited energy attracts more efficient users. This circumstance favours the opening of new ways of life and more efficient recycling of resources, and eliminates most productivity–reducing ‘ecological monopolies’. Ecological dominants tend to be replaced by successors with higher metabolism, which respond to more stimuli and engage in more varied interactions. Finally, increasingly efficient predators and herbivores favour faster turnover of resources.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6224
Author(s):  
Kosuke Mori ◽  
Tomohiro Tabata

This study aims to develop a comprehensive method for evaluating the environmental cost/benefits of photovoltaic (PV) solar plant installation versus conserving natural ecosystems. First, the positive and negative impacts of installing PV solar plants in regions with natural ecosystems are reviewed. For focus and quantification, climate change mitigation and economic benefit were considered as benefits, and the loss of carbon sinks and biodiversity as well as disaster risk were considered as negatives. These items were also integrated as external costs using a life-cycle assessment method, and a ratio of positive versus negative impacts (P/N ratio) was developed, as part of our evaluation. The method was applied to a case study in Hyogo Prefecture, Japan, where 361 large PV solar plants have been installed in areas that previously supported natural ecosystems. Prior to the PV installation, 25.5% of the plants were cleared from the natural ecosystem. Consequently, the annualized benefits (costs) for these Hyogo plants were estimated to be 101.16 (73.88) million USD, which yielded a P/N ratio of 1.37, indicating that their benefits outweighed their costs. An economic benefit was found to be one of the parameters that significantly influenced the P/N ratio.


2016 ◽  
Vol 42 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Anatoliy A. Khapugin ◽  
Tatyana B. Silaeva ◽  
Anastasia A. Semchuk ◽  
Elena N. Kunaeva

Abstract Population-based studies of endangered plant species are key methods for assessment of the status for these plants at any territory. Plant species of the Orchidaceae family are sensitive components in natural ecosystems. That is why determination of the status for their populations can be considered as indicators for the status of natural ecosystem position as a whole. Investigations of three Orchidaceae species populations (Orchis militaris L., Epipactis palustris (L.) Crantz, Malaxis monophyllos (L.) Swartz) were carried out in Central Russia (Republic of Mordovia). Abundance, density, structure and dynamics of populations of these species were studied. Species composition of accompanying flora was established for each rare species. Some morphometrical parameters of individuals for the studied species were measured. Features of ontogenetic spectrum for Orchis militaris and Epipactis palustris populations were shown.


2016 ◽  
Vol 14 (5) ◽  
pp. 727-737 ◽  
Author(s):  
John Moat ◽  
Athanasios Rizoulis ◽  
Graeme Fox ◽  
Mathew Upton

The domestic environment can be a source of pathogenic bacteria. We show here that domestic shower hoses may harbour potentially pathogenic bacteria and fungi. Well-developed biofilms were physically removed from the internal surface of shower hoses collected in four locations in England and Scotland. Amplicon pyrosequencing of 16S and 18S rRNA targets revealed the presence of common aquatic and environmental bacteria, including members of the Actinobacteria, Alphaproteobacteria, Bacteroidetes and non-tuberculous Mycobacteria. These bacteria are associated with infections in immunocompromised hosts and are widely reported in shower systems and as causes of water-acquired infection. More importantly, this study represents the first detailed analysis of fungal populations in shower systems and revealed the presence of sequences related to Exophiala mesophila, Fusarium fujikuroi and Malassezia restricta. These organisms can be associated with the environment and healthy skin, but also with infection in compromised and immuno-competent hosts and occurrence of dandruff. Domestic showering may result in exposure to aerosols of bacteria and fungi that are potentially pathogenic and toxigenic. It may be prudent to limit development of these biofilms by the use of disinfectants, or regular replacement of hoses, where immuno-compromised persons are present.


Author(s):  
Akira Inagaki ◽  
Daisuke Tanaka ◽  
Toshiaki Kanemoto

To prevent the warming global environment, the hydropower should occupy the attention of the electric power generation systems as clean and cool energy sources with the highest density. For the next leap in the hydroelectric power developments, however, we are under obligations to conserve natural ecosystems and/or to coexist with natures. To meet such circumstances, this paper proposes two kinds of the new type hydroelectric unit applicable to tidal currents, mountain torrents, rivers and/or water drain systems, and discusses the characteristics of the model turbine/unit.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2138-2143
Author(s):  
Fei Dong ◽  
Xiao Zhang ◽  
Jian Hong Xu ◽  
Jian Rong Shi ◽  
Yin-Won Lee ◽  
...  

Members of Fusarium graminearum species complex (FGSC) are the major pathogens that cause Fusarium head blight (FHB) in cereals worldwide. Symptoms of FHB on rice, including dark staining or browning of rice glumes, were recently observed in Jiangsu Province, China. To improve our understanding of the pathogens involved, 201 FGSC isolates were obtained from freshly harvested rice samples and identified by phylogenetic analyses. Among the 201 FGSC isolates, 196 were F. asiaticum and the remaining 5 were F. graminearum. Trichothecene chemotype and chemical analyses showed that 68.4% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype and the remainder were the nivalenol (NIV) chemotype. All of the F. graminearum isolates were the 15-acetyldeoxynivalenol chemotype. Pathogenicity assays showed that both the 3ADON and NIV chemotypes of F. asiaticum could infect wheat and rice spikes. FHB severity and trichothecene toxin analysis revealed that F. asiaticum with the NIV chemotype was less aggressive than that with the 3ADON chemotype in wheat, while the NIV-producing strains were more virulent than the 3ADON-producing strains in rice. F. asiaticum isolates with different chemotypes did not show significant differences in mycelial growth, sporulation, conidial dimensions, or perithecial production. These findings would provide useful information for developing management strategies for the control of FHB in China.


Sign in / Sign up

Export Citation Format

Share Document