scholarly journals The risk of Xylella fastidiosa outbreaks will decrease in the Mediterranean olive-producing regions

2020 ◽  
Author(s):  
M. Godefroid ◽  
M. Morente ◽  
T. Schartel ◽  
D. Cornara ◽  
A. Purcell ◽  
...  

AbstractThe bacterium Xylella fastidiosa (Xf) is a worldwide distributed invasive insect-borne plant pathogen, which causes lethal diseases to many economically-important crops including olives, citrus, almonds and grapes as well as numerous forest, ornamental, and uncultivated plants. The Mediterranean basin is the top supplier of olive oil with 93% of the world production and is consequently highly concerned about the recent invasion of Xf in Europe. Recently, bioeconomic models estimated putative losses induced by the spread of Xf across the European olive-producing area ranging from 1.9 to 5.2 billion euros over 50 years; however, such models did not take into account the insect vectors, which constitute a key driver of Xf spread. In the present study, we used bioclimatic species distribution models to predict the current and future climate suitability of the Mediterranean area for the main efficient or putative transmitters of Xf to olive (i.e. Philaenus spumarius, Neophilaenus campestris and Aphrophora alni). An important part of the total extent of the Mediterranean olive-producing area, mainly situated in southern Spain, Turkey and Greece, is predicted as currently poorly suitable for these vector species. Moreover, models forecast that nearly the totality of the Mediterranean olive-producing regions will likely become climatically little suitable for these vectors by 2050 due to climate change. In Europe, Xf outbreaks have occurred so far only in localities predicted as climatically suitable for these main vector species (e.g. the Apulia region of Italy) while the areas predicted as poorly suitable are still apparently Xf-free, which suggests that climate tolerances of vectors might play a main role in shaping Xf outbreaks patterns. This pattern highlights the crucial necessity of accounting for vectors when assessing risk of Xf outbreaks, and when considering vector-borne diseases in general. The risk maps presented here will have important practical application for the optimization of current and future strategies to control Xf in the Mediterranean region.

Author(s):  
M. Godefroid ◽  
M. Morente ◽  
T. Schartel ◽  
D. Cornara ◽  
A. Purcell ◽  
...  

AbstractThe bacterium Xylella fastidiosa (Xf) is an invasive insect-borne pathogen, which causes lethal diseases to important crops including olives, citrus, almonds and grapes as well as numerous forest, ornamental, and uncultivated plants. Outbreaks of Xf-related plant diseases are currently occurring in the Mediterranean region, causing substantial losses to various agricultural sectors. Several models have recently been published to identify which regions are at highest risk in Europe; however, such models did not consider the insect vectors, which constitute the key driver of short-range Xf spread. We fitted bioclimatic species distribution models to depict the macroclimatic preferences of the meadow spittlebug Philaenus spumarius L. (1978) (Hemiptera: Aphrophoridae), the major epidemiologically relevant vector currently responsible for Xf spread in the Europe. Many regions of Western Europe and Mediterranean basin are predicted by models as highly climatically suitable for this vector, including all regions where severe Xf have occurred so far. Conversely, the driest and warmest areas of the Mediterranean basin are predicted as little suitable for P. spumarius. Models forecast that agricultural-important parts of the southern Mediterranean area might experience a substantial decrease in climatic suitability for P. spumarius by the period 2040–2060. Areas predicted as highly suitable just for the bacterium but not optimal for this vector are apparently still free of severe Xf outbreaks, suggesting that climate tolerances of P. spumarius might partly explain the current spatial pattern of Xf outbreaks in Europe and should always be considered in further risk assessments.


Author(s):  
Manuela Gizzarelli ◽  
Valentina Foglia Manzillo ◽  
Lavinia Ciuca ◽  
Maria Elena Morgoglione ◽  
Nour El Houda Ben Fayala ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ephantus J. Muturi ◽  
Christopher Dunlap ◽  
Chelsea T. Smartt ◽  
Dongyoung Shin

AbstractInsecticide resistance has emerged as a persistent threat to the fight against vector-borne diseases. We compared the gut microbiota of permethrin-selected (PS) strain of Aedes aegypti relative to the parent (KW) strain from Key West, Florida. Bacterial richness but not diversity was significantly higher in PS strain compared to KW strain. The two mosquito strains also differed in their gut microbial composition. Cutibacterium spp., Corynebacterium spp., Citricoccus spp., Leucobacter spp., Acinetobacter spp., Dietzia spp., and Anaerococcus spp. were more abundant in PS strain than in KW strain. In contrast, Sphingomonas spp., Aquabacterium spp., Methylobacterium spp., Flavobacterium spp., Lactobacillus spp., unclassified Burkholderiaceae and unclassified Nostocaceae were more abundant in KW strain compared to PS strain. PS strain was enriched with propionate metabolizers, selenate reducers, and xylan, chitin, and chlorophenol degraders while KW strain was enriched with sulfur oxidizers, sulfur metabolizers, sulfate reducers and naphthalene and aromatic hydrocarbons degraders. These findings demonstrate an association between the gut microbiota and insecticide resistance in an important vector species and sets the foundation for future studies to investigate the contribution of gut microbiota to evolution of insecticide resistance in disease vectors.


2020 ◽  
Vol 11 (3) ◽  
pp. 361-404
Author(s):  
Bruno Moreira de Carvalho ◽  
Leticia Palazzi Perez ◽  
Beatriz Fatima Alves de Oliveira ◽  
Ludmilla da Silva Viana Jacobson ◽  
Marco Aurélio Horta ◽  
...  

Climate change affects human health either directly or indirectly, and related impacts are complex, non-linear, and depend on several variables. The various climate change impacts on health include a change in the spatial distribution of vector-borne diseases. In this regard, this study presents and discusses changes in the spatial distribution of climate suitability for visceral leishmaniasis, yellow fever and malaria in Brazil, in different global warming scenarios. Maximum entropy (MaxEnt) was used to construct climate suitability models in warming scenarios. Models were based in climate variables generated by the Eta-HadGEM2 ES regional model, in the baseline period 1965-2005 and RCP8.5 scenario, representing global warming levels of 1,5ºC (2011-2040), 2,0ºC (2041-2070) and 4,0ºC (2071-2099). The three diseases studied are largely influenced by climate and showed different distribution patterns within the country. In global warming scenarios, visceral leishmaniasis found more favorable climate conditions in the Southeastern and Southern regions of Brazil, while climate in the Northern and Center-West regions gradually became more favorable to yellow fever. In malaria scenarios, an increase in favorable climate conditions to its high incidence was observed in the Atlantic Forest, where currently extra-Amazonian cases occur. The scenarios presented herein represent different possible consequences for the health sector in terms of adopting (or not) different measures to mitigate climate change in Brazil, such as reducing the emission of greenhouse gases.  


2018 ◽  
Vol 26 ◽  
pp. S31-S36 ◽  
Author(s):  
R.N. Charrel ◽  
J.-M. Berenger ◽  
M. Laroche ◽  
N. Ayhan ◽  
I. Bitam ◽  
...  

Parasitology ◽  
1981 ◽  
Vol 82 (4) ◽  
pp. 69-80 ◽  

Insecticide resistance is a serious problem in the control of many vector-borne diseases, particularly in developing countries where the possibility of changing to an alternative compound may be restricted. Consequently genes giving susceptibility to insecticides in vector species can be viewed as constituting a valuable resource to be used up with discretion. The exchange of information and thought taking place in the Workshop was centred upon possible ways to conserve this resource, i.e. to slow down the evolution of resistance while maintaining adequate control, so preserving the effective life of available insecticides as long as possible. The subject was treated mainly in relation to insect vectors of disease although niost of the discussion would also be relevant to other insect pests.


2019 ◽  
Vol 12 (10) ◽  
pp. 1630-1643 ◽  
Author(s):  
Djamel Tahir ◽  
Bernard Davoust ◽  
Philippe Parola

Vector-borne diseases (VBDs) are among the leading causes of morbidity and mortality in humans and animals. The scale of VBDs is increasing worldwide, including in the Mediterranean Basin, a region exposed to climate changes. Indeed, weather conditions may influence the abundance and distribution of vectors. The vector-borne nematode diseases of dogs and cats, such as dirofilariosis, onchocercosis, thelaziosis, Cercopithifilaria, and Acanthocheilonema infections, are some of these vectorized diseases, several of which are zoonoses. They are all caused by parasitic nematodes transmitted by arthropods, including mosquitoes (Dirofilaria spp.), black flies (Onchocerca lupi), drosophilids (Thelazia callipaeda), ticks (Acanthocheilonema dracunculoides and Cercopithifilaria bainae), and fleas and lice (Acanthocheilonema reconditum). The control and prevention of these infections and diseases require a multidisciplinary approach based on strengthening collaboration between the different actors in the fields of health, research, sociology, economics, governments and citizens, to improve human, animal, and ecosystem health. This is the concept of "one health." The review aimed to provide a general update on the spatial and temporal distribution of vector-borne nematodes diseases affecting companion animals and humans, as well as the vectors involved in the Mediterranean area. Simultaneously, certain epidemiological parameters, diagnosis, treatment, and control of these diseases based on the "one health" concept will also be discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Lauren M. Gardner ◽  
David Fajardo ◽  
S. Travis Waller ◽  
Ophelia Wang ◽  
Sahotra Sarkar

The number of travel-acquired dengue infections has been on a constant rise in the United States and Europe over the past decade. An increased volume of international passenger air traffic originating from regions with endemic dengue contributes to the increasing number of dengue cases. This paper reports results from a network-based regression model which uses international passenger travel volumes, travel distances, predictive species distribution models (for the vector species), and infection data to quantify the relative risk of importing travel-acquired dengue infections into the US and Europe from dengue-endemic regions. Given the necessary data, this model can be used to identify optimal locations (origin cities, destination airports, etc.) for dengue surveillance. The model can be extended to other geographical regions and vector-borne diseases, as well as other network-based processes.


Sign in / Sign up

Export Citation Format

Share Document