scholarly journals Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF

Author(s):  
Molly J. McBride ◽  
Sarah R. Pope ◽  
Kai Hu ◽  
Jeffrey W. Slater ◽  
C. Denise Okafor ◽  
...  

AbstractIn biosynthesis of the pancreatic cancer drug streptozotocin, the tri-domain nonheme-iron oxygenase, SznF, hydroxylates Nδ and Nω’ of Nω-methyl-L-arginine before oxidatively rearranging the triply modified guanidine to the N-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the mono-iron cofactor in the enzyme’s C-terminal cupin domain, which effects the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in the N-hydroxylating heme-oxygenase-like (HO-like) central domain. Here we leverage our recent report of an intensely absorbing µ-peroxodiiron(III/III) intermediate formed from the Fe2(II/II) complex and O2 to understand assembly of the diiron cofactor in the HO-like domain and to obtain structures with both SznF iron cofactors bound. Tight binding at one diiron subsite is associated with a conformational change, which is followed by weak binding at the second subsite and rapid capture of O2 by the Fe2(II/II) complex. Differences between iron-deficient and iron-replete structures reveal both the conformational change required to form the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability, showing that a ligand-harboring core helix dynamically refolds during metal acquisition and release. The cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulation. The additional ligand is conserved in another experimentally validated HO-like N-oxygenase but not in two known HO-like diiron desaturases. Among ∼9600 sequences identified bioinformatically as belonging to the emerging HO-like diiron protein (HDO) superfamily, ∼25% have this carboxylate residue and are thus tentatively assigned as N-oxygenases.Significance statementThe enzyme SznF assembles the N-nitrosourea pharmacophore of the drug streptozotocin. Its central N-oxygenase domain resembles heme-oxygenase (HO) and belongs to an emerging superfamily of HO-like diiron enzymes (HDOs) with unstable metallocofactors that have resisted structural characterization. We investigated assembly of the O2-reactive diiron complex from metal-free SznF and Fe(II) and leveraged this insight to obtain the first structure of a functionally assigned HDO with intact cofactor. Conformational changes accompanying cofactor acquisition explain its instability, and the observation of an unanticipated glutamate ligand that is conserved in only a subset of the HDO sequences provides a potential basis for top-level assignment of enzymatic function. Our results thus provide a roadmap for structural and functional characterization of novel HDOs.

2020 ◽  
Author(s):  
Dube Dheeraj Prakashchand ◽  
Jagannath Mondal

AbstractApolipoprotein E (ApoE) is a major determinant protein of lipid-metabolism and actively participates in lipid transport in plasma and central nervous system. As a part of its lipid-transport activity, low-density-lipid receptor (LDLR) needs to recognise apoE as a ligand. But, all prior evidences point to the fact that the recognition of apoE by LDLR only takes place in presence of lipid molecules which are assumed to play an important role in conformationally activating apoE upon binding. However, the molecular mechanism underlying the complexation process of apoE with lipid molecules and associated lipid-induced conformational change of apoE are currently elusive. Here we capture the spontaneous complexation process of monomeric apoE3 and phospholipid molecules by employing molecular dynamics simulation at multiple resolution. In particular, our multi scale simulations demonstrate a large-scale conformational change of the full-length apoE3, triggered by two-stage apoE-lipid complexation process. At first stage, lipid molecules assemble close to C-terminal domain of the protein and induce a rapid separation of C-terminal domain of monomeric apoE3 from rest of its tertiary fold. In the second and final stage, long-time scale simulation captures a slow on-the-fly lipid-induced inter-helix separation process in N-terminal domain of the protein. The resultant equilibrated complex, as obtained in the current work resembles an ‘open conformation’ of lipid-stabilised apoE, previously hypothesised based on small-angle X-ray scattering experiments. Taken together, the simulations provide a molecular view of kinetic interplay of apoE and lipid complexation multi-stage process leading to conformational changes in protein, potentially making it conducive for recognising LDLR.


Endocrinology ◽  
2020 ◽  
Vol 161 (8) ◽  
Author(s):  
Hwei-Ming Peng ◽  
Juan Valentín-Goyco ◽  
Sang-Choul Im ◽  
Bing Han ◽  
Jiayan Liu ◽  
...  

Abstract The potent androgen 5α-dihydrotestosterone irreversibly derives from testosterone via the activity of steroid 5α-reductases (5αRs). The major 5αR isoforms in most species, 5αR1 and 5αR2, have not been purified to homogeneity. We report here the heterologous expression of polyhistidine-tagged, codon-optimized human 5αR1 and 5αR2 cDNAs in Escherichia coli. A combination of the nonionic detergents Triton X-100 and Nonidet P-40 enabled solubilization of these extremely hydrophobic integral membrane proteins and facilitated purification with affinity and cation-exchange chromatography methods. For functional reconstitution, we incorporated the purified isoenzymes into Triton X-100-saturated dioleoylphosphatidylcholine liposomes and removed excess detergent with polystyrene beads. Kinetic studies indicated that the 2 isozymes differ in biochemical properties, with 5αR2 having a lower apparent Km for testosterone, androstenedione, progesterone, and 17-hydroxyprogesterone than 5αR1; however, 5αR1 had a greater capacity for steroid conversion, as reflected by a higher Vmax than 5αR2. Both enzymes preferred progesterone as substrate over other steroids, and the catalytic efficiency of purified reconstituted 5αR2 exhibited a sharp pH optimum at pH 5. Intriguingly, we found that the prostate-cancer drug-metabolite 3-keto-∆ 4-abiraterone is metabolized by 5αR1 but not 5αR2, which may serve as a structural basis for isoform selectivity and inhibitor design. The functional characterization results with the purified reconstituted isoenzymes paralleled trends obtained with HEK-293 cell lines stably expressing native 5αR1 and 5αR2. Access to purified human 5αR1 and 5αR2 will advance studies of these important enzymes and might help to clarify their contributions to steroid anabolism and catabolism.


2009 ◽  
Vol 83 (22) ◽  
pp. 11491-11501 ◽  
Author(s):  
Steffen Lindert ◽  
Mariena Silvestry ◽  
Tina-Marie Mullen ◽  
Glen R. Nemerow ◽  
Phoebe L. Stewart

ABSTRACT A structure of adenovirus type 12 (HAdV12) complexed with a soluble form of integrin αvβ5 was determined by cryo-electron microscopy (cryoEM) image reconstruction. Subnanometer resolution (8 Å) was achieved for the icosahedral capsid with moderate resolution (27 Å) for integrin density above each penton base. Modeling with αvβ3 and αIIbβ3 crystal structures indicates that a maximum of four integrins fit over the pentameric penton base. The close spacing (∼60 Å) of the RGD protrusions on penton base precludes integrin binding in the same orientation to neighboring RGD sites. Flexible penton-base RGD loops and incoherent averaging of bound integrin molecules explain the moderate resolution observed for the integrin density. A model with four integrins bound to a penton base suggests that integrin might extend one RGD-loop in the direction that could induce a conformational change in the penton base involving clockwise untwisting of the pentamer. A global conformational change in penton base could be one step on the way to the release of Ad vertex proteins during cell entry. Comparison of the cryoEM structure with bent and extended models for the integrin ectodomain reveals that integrin adopts an extended conformation when bound to the Ad penton base, a multivalent viral ligand. These findings shed further light on the structural basis of integrin binding to biologically relevant ligands, as well as on the molecular events leading to HAdV cell entry.


2021 ◽  
Vol 118 (4) ◽  
pp. e2015931118
Author(s):  
Molly J. McBride ◽  
Sarah R. Pope ◽  
Kai Hu ◽  
C. Denise Okafor ◽  
Emily P. Balskus ◽  
...  

In biosynthesis of the pancreatic cancer drug streptozotocin, the tridomain nonheme-iron oxygenase SznF hydroxylates Nδ and Nω′ of Nω-methyl-l-arginine before oxidatively rearranging the triply modified guanidine to the N-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the monoiron cofactor in the enzyme’s C-terminal cupin domain, which promotes the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in the N-hydroxylating heme-oxygenase–like (HO-like) central domain. We leveraged our recent observation that the N-oxygenating µ-peroxodiiron(III/III) intermediate can form in the HO-like domain after the apo protein self-assembles its diiron(II/II) cofactor to solve structures of SznF with both of its iron cofactors bound. These structures of a biochemically validated member of the emerging heme-oxygenase–like diiron oxidase and oxygenase (HDO) superfamily with intact diiron cofactor reveal both the large-scale conformational change required to assemble the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability—a trait shared by the other validated HDOs. During cofactor (dis)assembly, a ligand-harboring core helix dynamically (un)folds. The diiron cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulations. The additional carboxylate ligand is conserved in another N-oxygenating HDO but not in two HDOs that cleave carbon–hydrogen and carbon–carbon bonds to install olefins. Among ∼9,600 sequences identified bioinformatically as members of the emerging HDO superfamily, ∼25% conserve this additional carboxylate residue and are thus tentatively assigned as N-oxygenases.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


2019 ◽  
Vol 25 (42) ◽  
pp. 5803-5821 ◽  
Author(s):  
Mona N. Rahman ◽  
Dragic Vukomanovic ◽  
Jason Z. Vlahakis ◽  
Walter A. Szarek ◽  
Kanji Nakatsu ◽  
...  

The development of isozyme-selective heme oxygenase (HO) inhibitors promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties with a role in several disease states; thus, it is an enticing therapeutic target. Historically, the metalloporphyrins have been used as competitive HO inhibitors based on their structural similarity to the substrate, heme. However, heme’s important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), results in non-selectivity being an unfortunate side effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort over a decade ago to develop novel compounds as potent, selective inhibitors of HO. The result was the creation of the first generation of non-porphyrin based, non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated and provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies. Notably, HO-1 inhibitors are of particular interest for the treatment of hyperbilirubinemia and certain types of cancer. Key features based on this initial study have already been used by others to discover additional potential HO-1 inhibitors. Moreover, studies have begun to use selected compounds and determine their effects in some disease models.


Author(s):  
Aditi Rathee ◽  
Anil Panwar ◽  
Seema Kumari ◽  
Sanjay Chhibber ◽  
Ashok Kumar

Introduction:: Enzymatic degradation of peptidoglycan, a structural cell wall component of Gram-positive bacteria, has attracted considerable attention being a specific target for many known antibiotics. Methods:: Peptidoglycan hydrolases are involved in bacterial lysis through peptidoglycan degradation. β-N-acetylglucosaminidase, a peptidoglycan hydrolase, acts on O-glycosidic bonds formed by N-acetylglucosamine and N-acetyl muramic acid residues of peptidoglycan. Aim of present study was to study the action of β-N-acetylglucosaminidase, on methicillin- resistant Staphylococcus aureus (MRSA) and other Gram-negative bacteria. Results:: We investigated its dynamic behaviour using molecular dynamics simulation and observed that serine and alanine residues are involved in catalytic reaction in addition to aspartic acid, histidine, lysine and arginine residues. When simulated in its bound state, the RMSD values were found lesser than crystal form in the time stamp of 1000 picoseconds revealing its stability. Structure remained stably folded over 1000 picoseconds without undergoing any major change further confirming the stability of complex. Conclusion:: It can be concluded that enzymes belonging to this category can serve as a tool in eradicating Gram-positive pathogens and associated infections.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg1483
Author(s):  
Tianlei Wen ◽  
Ziyu Wang ◽  
Xiaozhe Chen ◽  
Yue Ren ◽  
Xuhang Lu ◽  
...  

Calcium-sensing receptor (CaSR) is a class C G protein–coupled receptor (GPCR) that plays an important role in calcium homeostasis and parathyroid hormone secretion. Here, we present multiple cryo–electron microscopy structures of full-length CaSR in distinct ligand-bound states. Ligands (Ca2+ and l-tryptophan) bind to the extracellular domain of CaSR and induce large-scale conformational changes, leading to the closure of two heptahelical transmembrane domains (7TMDs) for activation. The positive modulator (evocalcet) and the negative allosteric modulator (NPS-2143) occupy the similar binding pocket in 7TMD. The binding of NPS-2143 causes a considerable rearrangement of two 7TMDs, forming an inactivated TM6/TM6 interface. Moreover, a total of 305 disease-causing missense mutations of CaSR have been mapped to the structure in the active state, creating hotspot maps of five clinical endocrine disorders. Our results provide a structural framework for understanding the activation, allosteric modulation mechanism, and disease therapy for class C GPCRs.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1155-1159 ◽  
Author(s):  
Jian-Ping Xiong ◽  
Thilo Stehle ◽  
Simon L. Goodman ◽  
M. Amin Arnaout

Abstract Integrins are cell adhesion receptors that communicate biochemical and mechanical signals in a bidirectional manner across the plasma membrane and thus influence most cellular functions. Intracellular signals switch integrins into a ligand-competent state as a result of elicited conformational changes in the integrin ectodomain. Binding of extracellular ligands induces, in turn, structural changes that convey distinct signals to the cell interior. The structural basis of this bidirectional signaling has been the focus of intensive study for the past 3 decades. In this perspective, we develop a new hypothesis for integrin activation based on recent crystallographic, electron microscopic, and biochemical studies.


Sign in / Sign up

Export Citation Format

Share Document