scholarly journals Engineered Terpenoid Production in Synechocystis sp. PCC 6803 Under Different Growth Conditions

2020 ◽  
Author(s):  
Ryan A. Herold ◽  
Samantha J. Bryan

ABSTRACTTerpenoids are the largest class of natural products and have applications in a wide variety of industries. Many terpenoids can be chemically synthesized or extracted from plants, but this is often uneconomical or unsustainable. An alternative production method relies on the heterologous expression of terpene synthase enzymes in cyanobacteria, producing the desired compounds directly from carbon dioxide. In this work, a patchoulol synthase enzyme from Pogostemon cablin (patchouli) was expressed in the cyanobacterium Synechocystis sp. PCC 6803 under four different growth conditions. Final yields of patchoulol from each growth condition were as follows: 249 μg L−1, photoautotrophic growth; 6.5 μg L−1, mixotrophic growth; 27.6 μg L−1, bicarbonate low light; 31.7 μg L−1, bicarbonate high light. By comparing patchoulol production across growth conditions, we identified a significant positive correlation between the production of photopigments (chlorophyll and carotenoids) and the production of patchoulol. Importantly, this relationship was found to be stronger than the correlation between cell density and patchoulol production across growth conditions, which was not statistically significant. The relationship between photopigments and patchoulol should be generalizable to the production of other terpenoids that rely on expression of the endogenous methylerythritol phosphate (MEP) pathway in cyanobacteria. Based on the results of this work, we propose a strategy for maximizing terpenoid production in cyanobacteria by optimizing growth conditions for photopigment production, resulting in increased flux through the MEP pathway. This strategy has the advantage of facile photopigment quantification using simple spectroscopic methods, and optimized growth conditions can be utilized in partnership with conventional terpenoid production strategies to further improve yields.

Microbiology ◽  
2014 ◽  
Vol 160 (1) ◽  
pp. 228-241 ◽  
Author(s):  
Wen-Ting Ke ◽  
Guo-Zheng Dai ◽  
Hai-Bo Jiang ◽  
Rui Zhang ◽  
Bao-Sheng Qiu

Synechocystis sp. PCC 6803 possesses only one sod gene, sodB, encoding iron superoxide dismutase (FeSOD). It could not be knocked out completely by direct insertion of the kanamycin resistance cassette. When the promoter of sodB in WT Synechocystis was replaced with the copper-regulated promoter PpetE, a completely segregated PpetE–sodB strain could be obtained. When this strain was cultured in copper-starved BG11 medium, the chlorophyll a content was greatly reduced, growth was seriously inhibited and the strain was nearly dead during the 8 days of growth, whilst the WT strain grew well under the same growth conditions. These results indicated that sodB was essential for photoautotrophic growth of Synechocystis. The reduction of sodB gene copies in the Synechocystis genome rendered the cells more sensitive to oxidative stress produced by methyl viologen and norflurazon. sodB still could not be knocked out completely after active expression of sodC (encoding Cu/ZnSOD) from Synechococcus sp. CC9311 in the neutral site slr0168 under the control of the psbAII promoter, which means the function of FeSOD could not be complemented completely by Cu/ZnSOD. Heterogeneously expressed sodC increased the oxidation and photoinhibition tolerance of the Synechocystis sodB knockdown mutant. Membrane fractionation followed by immunoblotting revealed that FeSOD was localized in the cytoplasm, and Cu/ZnSOD was localized in the soluble and thylakoid membrane fractions of the transformed Synechocystis. Cu/ZnSOD has a predicted N-terminal signal peptide, so it is probably a lumen protein. The different subcellular localization of these two SODs may have resulted in the failure of substitution of sodC for sodB.


2001 ◽  
Vol 183 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Svetlana Ermakova-Gerdes ◽  
Zhenbao Yu ◽  
Wim Vermaas

ABSTRACT To identify important residues in the D2 protein of photosystem II (PSII) in the cyanobacterium Synechocystis sp. strain PCC 6803, we randomly mutagenized a region of psbDI (coding for a 96-residue-long C-terminal part of D2) with sodium bisulfite. Mutagenized plasmids were introduced into a Synechocystissp. strain PCC 6803 mutant that lacks both psbD genes, and mutants with impaired PSII function were selected. Nine D2 residues were identified that are important for PSII stability and/or function, as their mutation led to impairment of photoautotrophic growth. Five of these residues are likely to be involved in the formation of the QA-binding niche; these are Ala249, Ser254, Gly258, Ala260, and His268. Three others (Gly278, Ser283, and Gly288) are in transmembrane α-helix E, and their alteration leads to destabilization of PSII but not to major functional alterations of the remaining centers, indicating that they are unlikely to interact directly with cofactors. In the C-terminal lumenal tail of D2, only one residue (Arg294) was identified as functionally important for PSII. However, from the number of mutants generated it is likely that most or all of the 70 residues that are susceptible to bisulfite mutagenesis have been altered at least once. The fact that mutations in most of these residues have not been picked up by our screening method suggests that these mutations led to a normal photoautotrophic phenotype. A novel method of intragenic complementation in Synechocystissp. strain PCC 6803 was developed to facilitate genetic analysis ofpsbDI mutants containing several amino acid changes in the targeted domain. Recombination between genome copies in the same cell appears to be much more prevalent in Synechocystis sp. strain PCC 6803 than was generally assumed.


Author(s):  
F. Vos ◽  
L. Delaey ◽  
M. De Bonte ◽  
L. Froyen

Abstract Results are presented of a project analysing the relationship between the production parameters of plasma sprayed self-lubricating Cr2O3-CaF2 coatings and their structural, wear and lubricating properties. The production method consists of a preparation step where a powder blend of the matrix material (Cr203) and solid lubricant (CaF2) is agglomerated, followed by atmospheric plasma spraying (APS) of the agglomerates. Selection of the most appropriate agglomeration and plasma spray parameters as well as the microstructure of the coatings will be discussed.


2007 ◽  
Vol 189 (21) ◽  
pp. 7829-7840 ◽  
Author(s):  
Tina C. Summerfield ◽  
Louis A. Sherman

ABSTRACT We report on differential gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803 after light-dark transitions in wild-type, ΔsigB, and ΔsigD strains. We also studied the effect of day length in the presence of glucose on a ΔsigB ΔsigE mutant. Our results indicated that the absence of SigB or SigD predominately altered gene expression in the dark or in the light, respectively. In the light, approximately 350 genes displayed transcript levels in the ΔsigD strain that were different from those of the wild type, with over 200 of these up-regulated in the mutant. In the dark, removal of SigB altered more than 150 genes, and the levels of 136 of these were increased in the mutant compared to those in the wild type. The removal of both SigB and SigE had a major impact on gene expression under mixotrophic growth conditions and resulted in the inability of cells to grow in the presence of glucose with 8-h light and 16-h dark cycles. Our results indicated the importance of group II σ factors in the global regulation of transcription in this organism and are best explained by using the σ cycle paradigm with the stochastic release model described previously (R. A. Mooney, S. A. Darst, and R. Landick, Mol. Cell 20:335-345, 2005). We combined our results with the total protein levels of the σ factors in the light and dark as calculated previously (S. Imamura, S. Yoshihara, S. Nakano, N. Shiozaki, A. Yamada, K. Tanaka, H. Takahashi, M. Asayama, and M. Shirai, J. Mol. Biol. 325:857-872, 2003; S. Imamura, M. Asayama, H. Takahashi, K. Tanaka, H. Takahashi, and M. Shirai, FEBS Lett. 554:357-362, 2003). Thus, we concluded that the control of global transcription is based on the amount of the various σ factors present and able to bind RNA polymerase.


Author(s):  
Dewangga Ari Kusuma Putra ◽  
I Wayan Restu ◽  
I wayan Darya Kartika

Grey Mullet fish (Mugil cephalus) is one of the economically valuable fish in the waters of the Ngurah Rai Forest Park, Bali. This study was conducted to examine the relationship between the length and weight of the condition of Belanak fish caught in the waters of the Ngurah Rai Forest Park, Bali. The purpose of this study was to determine the description of the growth conditions of Belanak in the waters of Ngurah Rai Tahura, Bali will create a plan for sustainable management of Belanak Fish resources. Sampling was conducted in March 2019 to May 2019. Data analysis used was the relationship between length and weight and condition factors. Data processing is done by using the Microsoft Excel program. The results obtained showed that the mullet fish has a negative allometric growth pattern (long growth is faster than weight growth) equation W = 0.011 L2.195 and the coefficient of determination (R2) of 0.75 (75% growth in weight is influenced by growth long). Belanak fish caught in Ngurah Rai Tahura waters have a condition factor value (K value) ranging from 0.941 to 1.514 which indicates that Belanak is in good condition and is in its infancy.


Author(s):  
Omar Eduardo Omar Sánchez Estrada

Developing useful objects for a functional reeducation of senior citizens persons about the basic activities of daily living must be conceptualized considering theories, techniques, and approaches in methodology, based on ecologically bearable structures, economically viable, and socially equitable. Consequently, the present chapter has the objective to state the criteria and strategies of a sustainable design, from a detailed study of applicability of 1) user-product interaction, observation, understanding, dimensional relationship, and evaluation; 2) creative process, identification, ideation, definition, prototypes, evaluation, and structuration; 3) technical specifications, structure, sustainability, ergonomics, aesthetics, and evaluation; 4) manufacture method, sustainability, production method, life cycle, capital assets, official norms, and optimization. A contextual and conceptual analysis is proposed for the beginning, development, and conclusion of the projects so as to reestablish the relationship between natural processes and human activity.


2007 ◽  
Vol 79 (4) ◽  
pp. 739-751 ◽  
Author(s):  
Michel Rohmer

The long-overlooked methylerythritol phosphate (MEP) pathway represents an alternative to the mevalonate route for the formation of isoprene units. It is found in most bacteria as well as in the plastids of all phototrophic organisms. A selection of significant steps of its discovery and elucidation are presented in this contribution, as well as a complete hypothetical biogenetic scheme for the last reduction step.


2008 ◽  
Vol 191 (5) ◽  
pp. 1581-1586 ◽  
Author(s):  
Yurie Seino ◽  
Tomoko Takahashi ◽  
Yukako Hihara

ABSTRACT The coordinated high-light response of genes encoding subunits of photosystem I (PSI) is achieved by the AT-rich region located just upstream of the core promoter in Synechocystis sp. strain PCC 6803. The upstream element enhances the basal promoter activity under low-light conditions, whereas this positive regulation is lost immediately after the shift to high-light conditions. In this study, we focused on a high-light regulatory 1 (HLR1) sequence included in the upstream element of every PSI gene examined. A gel mobility shift assay revealed that a response regulator RpaB binds to the HLR1 sequence in PSI promoters. Base substitution in the HLR1 sequence or decrease in copy number of the rpaB gene resulted in decrease in the promoter activity of PSI genes under low-light conditions. These observations suggest that RpaB acts as a transcriptional activator for PSI genes. It is likely that RpaB binds to the HLR1 sequence under low-light conditions and works for positive regulation of PSI genes and for negative regulation of high-light-inducible genes depending on the location of the HLR1 sequence within target promoters.


2003 ◽  
Vol 185 (13) ◽  
pp. 3878-3887 ◽  
Author(s):  
Jianping Yu ◽  
Gaozhong Shen ◽  
Tao Wang ◽  
Donald A. Bryant ◽  
John H. Golbeck ◽  
...  

ABSTRACT In previous work, some members of our group isolated mutant strains of Synechocystis sp. strain PCC 6803 in which point mutations had been inserted into the psaC gene to alter the cysteine residues to the FA and FB iron-sulfur clusters in the PsaC subunit of photosystem I (J. P. Yu, I. R. Vassiliev, Y. S. Jung, J. H. Golbeck, and L. McIntosh, J. Biol. Chem. 272:8032-8039, 1997). These mutant strains did not grow photoautotrophically due to suppressed levels of chlorophyll a and photosystem I. In the results described here, we show that suppressor mutations produced strains that are capable of photoautotrophic growth at moderate light intensity (20 μmol m−2 s−1). Two separate suppressor strains of C14SPsaC, termed C14SPsaC-R62 and C14SPsaC-R18, were studied and found to have mutations in a previously uncharacterized open reading frame of the Synechocystis sp. strain PCC 6803 genome named sll0088. C14SPsaC-R62 was found to substitute Pro for Arg at residue 161 as the result of a G482→C change in sll0088, and C14SPsaC-R18 was found to have a three-amino-acid insertion of Gly-Tyr-Phe following Cys231 as the result of a TGGTTATTT duplication at T690 in sll0088. These suppressor strains showed near-wild-type levels of chlorophyll a and photosystem I, yet the serine oxygen ligand to FB was retained as shown by the retention of the S ≥ 3/2 spin state of the [4Fe-4S] cluster. The inactivation of sll0088 by insertion of a kanamycin resistance cartridge in the primary C14SPsaC mutant produced an engineered suppressor strain capable of photoautotrophic growth. There was no difference in psaC gene expression or in the amount of PsaC protein assembled in thylakoids between the wild type and an sll0088 deletion mutant. The sll0088 gene encodes a protein predicted to be a transcriptional regulator with sequence similarities to transcription factors in other prokaryotic and eukaryotic organisms, including Arabidopsis thaliana. The protein contains a typical helix-turn-helix DNA-binding motif and can be classified as a negative regulator by phylogenetic analysis. This suggests that the product of sll0088 has a role in regulating the biogenesis of photosystem I.


Sign in / Sign up

Export Citation Format

Share Document