scholarly journals A simple, high-throughput method of protein and label removal from extracellular vesicle samples

2020 ◽  
Author(s):  
Joshua A. Welsh ◽  
Bryce Killingsworth ◽  
Julia Kepley ◽  
Tim Traynor ◽  
Kathy McKinnon ◽  
...  

AbstractEvidence continues to increase of the clinical utility extracellular vesicles (EVs) can provide as translational biomarkers. While a wide variety of EV isolation and purification methods have been implemented, few techniques are high-throughput and scalable for removing excess fluorescent reagents (e.g. dyes, antibodies). EVs are too small to be recovered from routine cell-processing procedures, such as filtration or centrifugation. The lack of suitable methods for removing unbound labels, especially in optical assays, is a major roadblock to accurate EV phenotyping and utilization of EV assays in a translational or clinical setting. Therefore, we developed a method for using a multi-modal resin, referred to as EV-Clean, to remove unbound labels from EV samples, and we demonstrate improvement in flow cytometric EV analysis with the use of this EV-Clean method.

Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3737-3745
Author(s):  
Joshua A. Welsh ◽  
Bryce Killingsworth ◽  
Julia Kepley ◽  
Tim Traynor ◽  
Kathy McKinnon ◽  
...  

Proposed pipeline to increase of the clinical utility extracellular vesicles (EVs) as translational biomarkers.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3156
Author(s):  
Daniel S. K. Liu ◽  
Flora M. Upton ◽  
Eleanor Rees ◽  
Christopher Limb ◽  
Long R. Jiao ◽  
...  

Cancer cells release extracellular vesicles, which are a rich target for biomarker discovery and provide a promising mechanism for liquid biopsy. Size-exclusion chromatography (SEC) is an increasingly popular technique, which has been rediscovered for the purposes of extracellular vesicle (EV) isolation and purification from diverse biofluids. A systematic review was undertaken to identify all papers that described size exclusion as their primary EV isolation method in cancer research. In all, 37 papers were identified and discussed, which showcases the breadth of applications in which EVs can be utilised, from proteomics, to RNA, and through to functionality. A range of different methods are highlighted, with Sepharose-based techniques predominating. EVs isolated using SEC are able to identify cancer cells, highlight active pathways in tumourigenesis, clinically distinguish cohorts, and remain functionally active for further experiments.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 186
Author(s):  
Asma Akbar ◽  
Farzaneh Malekian ◽  
Neda Baghban ◽  
Sai Priyanka Kodam ◽  
Mujib Ullah

The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.


2021 ◽  
Author(s):  
Yanling Cai ◽  
Di Wu

Extracellular vesicles (EVs) are heterogeneous due to their cell of origins, biogenesis, stimuli in the microenvironment and so on. Single EV analysis is required for the study of EV heterogeneity. Besides the investigation of EV biology, single EV analysis technologies are promising approach for liquid biopsy, which relies on the detection of biomarker EVs readily available in body fluids but in trace amount. However, EVs are nano-scaled structures, which beyond the resolution of conventional technologies like optical microscopes, flow cytometers and so on. In this chapter, we will discuss advanced strategies for studying single EVs, including single EV imaging systems, flow cytometers, nano-sensing technologies and single EV barcoding assay.


Planta Medica ◽  
2016 ◽  
Vol 82 (05) ◽  
Author(s):  
C Avonto ◽  
AG Chittiboyina ◽  
D Rua ◽  
IA Khan

2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


Sign in / Sign up

Export Citation Format

Share Document