scholarly journals Scaffold-scaffold interactions regulate cell polarity in a bacterium

2020 ◽  
Author(s):  
Wei Zhao ◽  
Samuel W. Duvall ◽  
Kimberly A. Kowallis ◽  
Chao Zhang ◽  
Dylan T. Tomares ◽  
...  

AbstractThe localization of two biochemically distinct signaling hubs at opposite cell poles provides the foundation for asymmetric cell division in Caulobacter crescentus. Here we identify an interaction between the scaffolds PodJ and PopZ that regulates the assembly of the new cell pole signaling complex. Time-course imaging of a mCherry-sfGFP-PopZ fluorescent timer throughout the cell cycle revealed that existing PopZ resides at the old cell pole while newly translated PopZ accumulates at the new cell pole. Our studies suggest that interactions between PodJ and PopZ promotes the sequestration of older PopZ and robust accumulation of newl PopZ at the new cell pole. Elimination of the PodJ-PopZ interaction impacts PopZ client proteins, leading to chromosome segregation defects in one-third of cells. Additionally, this PopZ-PodJ interaction is crucial for anchoring PodJ and preventing PodJ extracellular loss at the old cell pole through unknown mechanism. Therefore, segregation of PopZ protein at the old pole and recruitment of newly translated PopZ at the new pole via the PodJ scaffold ensures stringent inheritance and maintenance of the polarity axis within dividing C. crescentus cells.

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Ady B. Meléndez ◽  
Inoka P. Menikpurage ◽  
Paola E. Mera

ABSTRACT Maintaining the integrity of the genome is essential to cell survival. In the bacterium Caulobacter crescentus, the single circular chromosome exhibits a specific orientation in the cell, with the replication origin (ori) residing at the pole of the cell bearing a stalk. Upon initiation of replication, the duplicated centromere-like region parS and ori move rapidly to the opposite pole where parS is captured by a microdomain hosting a unique set of proteins that contribute to the identity of progeny cells. Many questions remain as to how this organization is maintained. In this study, we constructed strains of Caulobacter in which ori and the parS centromere can be induced to move to the opposite cell pole in the absence of chromosome replication, allowing us to ask whether once these chromosomal foci were positioned at the wrong pole, replication initiation and chromosome segregation can proceed in the opposite orientation. Our data reveal that DnaA can initiate replication and ParA can orchestrate segregation from either cell pole. The cell reconstructs the organization of its ParA gradient in the opposite orientation to segregate one replicated centromere from the new pole toward the stalked pole (i.e., opposite direction), while displaying no detectable viability defects. Thus, the unique polar microdomains exhibit remarkable flexibility in serving as a platform for directional chromosome segregation along the long axis of the cell. IMPORTANCE Bacteria can accomplish surprising levels of organization in the absence of membrane organelles by constructing subcellular asymmetric protein gradients. These gradients are composed of regulators that can either trigger or inhibit cell cycle events from distinct cell poles. In Caulobacter crescentus, the onset of chromosome replication and segregation from the stalked pole are regulated by asymmetric protein gradients. We show that the activators of chromosome replication and segregation are not restricted to the stalked pole and that their organization and directionality can be flipped in orientation. Our results also indicate that the subcellular location of key chromosomal loci play important roles in the establishment of the asymmetric organization of cell cycle regulators.


2021 ◽  
Author(s):  
Pénélope Darnat ◽  
Angelique Burg ◽  
Jérémy Sallé ◽  
Jérôme Lacoste ◽  
Sophie Louvet-Vallée ◽  
...  

Abstract Cell proliferation and cell polarity need to be precisely coordinated to orient the asymmetric cell divisions crucial for generating cell diversity in epithelia. In many instances, the Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is spatially and temporally coordinated with cell cycle progression has remained elusive. Using Drosophila sensory organ precursor cells as a model system, we show that Cyclin A, the main Cyclin driving the transition to M-phase of the cell cycle, is recruited to the apical-posterior cortex in prophase by the Frizzled/Dishevelled complex. This cortically localized Cyclin A then regulates the orientation of the division by recruiting Mud, a homologue of NuMA, the well-known spindle-associated protein. The observed non-canonical subcellular localization of Cyclin A reveals this mitotic factor as a direct link between cell proliferation, cell polarity and spindle orientation.


2021 ◽  
Vol 118 (13) ◽  
pp. e2024705118
Author(s):  
Jiarui Wang ◽  
W. E. Moerner ◽  
Lucy Shapiro

Asymmetric cell division generates two daughter cells with distinct characteristics and fates. Positioning different regulatory and signaling proteins at the opposing ends of the predivisional cell produces molecularly distinct daughter cells. Here, we report a strategy deployed by the asymmetrically dividing bacterium Caulobacter crescentus where a regulatory protein is programmed to perform distinct functions at the opposing cell poles. We find that the CtrA proteolysis adaptor protein PopA assumes distinct oligomeric states at the two cell poles through asymmetrically distributed c-di-GMP: dimeric at the stalked pole and monomeric at the swarmer pole. Different polar organizing proteins at each cell pole recruit PopA where it interacts with and mediates the function of two molecular machines: the ClpXP degradation machinery at the stalked pole and the flagellar basal body at the swarmer pole. We discovered a binding partner of PopA at the swarmer cell pole that together with PopA regulates the length of the flagella filament. Our work demonstrates how a second messenger provides spatiotemporal cues to change the physical behavior of an effector protein, thereby facilitating asymmetry.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Adam M. Perez ◽  
Thomas H. Mann ◽  
Keren Lasker ◽  
Daniel G. Ahrens ◽  
Michael R. Eckart ◽  
...  

ABSTRACT Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment. IMPORTANCE Lacking internal membrane-bound compartments, bacteria achieve subcellular organization by establishing self-assembling protein-based microdomains. The asymmetrically dividing bacterium Caulobacter crescentus uses one such microdomain to link cell cycle progression to morphogenesis, but the mechanism for the generation of this microdomain has remained unclear. Here, we demonstrate that the ordered assembly of this microdomain occurs via the polymeric network protein PopZ directly recruiting the polarity factor SpmX, which then recruits the histidine kinase DivJ to the developing cell pole. Further, we find that overexpression of the bridge protein SpmX in Caulobacter disrupts this ordered assembly, generating ectopic cell poles containing both PopZ and DivJ. Together, PopZ and SpmX assemble into a cooligomeric network that forms the basis for a polar microdomain that coordinates bacterial cell polarity. IMPORTANCE Lacking internal membrane-bound compartments, bacteria achieve subcellular organization by establishing self-assembling protein-based microdomains. The asymmetrically dividing bacterium Caulobacter crescentus uses one such microdomain to link cell cycle progression to morphogenesis, but the mechanism for the generation of this microdomain has remained unclear. Here, we demonstrate that the ordered assembly of this microdomain occurs via the polymeric network protein PopZ directly recruiting the polarity factor SpmX, which then recruits the histidine kinase DivJ to the developing cell pole. Further, we find that overexpression of the bridge protein SpmX in Caulobacter disrupts this ordered assembly, generating ectopic cell poles containing both PopZ and DivJ. Together, PopZ and SpmX assemble into a cooligomeric network that forms the basis for a polar microdomain that coordinates bacterial cell polarity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elizaveta Krol ◽  
Lisa Stuckenschneider ◽  
Joana M. Kästle Silva ◽  
Peter L. Graumann ◽  
Anke Becker

AbstractIn Rhizobiales bacteria, such as Sinorhizobium meliloti, cell elongation takes place only at new cell poles, generated by cell division. Here, we show that the role of the FtsN-like protein RgsS in S. meliloti extends beyond cell division. RgsS contains a conserved SPOR domain known to bind amidase-processed peptidoglycan. This part of RgsS and peptidoglycan amidase AmiC are crucial for reliable selection of the new cell pole as cell elongation zone. Absence of these components increases mobility of RgsS molecules, as well as abnormal RgsS accumulation and positioning of the growth zone at the old cell pole in about one third of the cells. These cells with inverted growth polarity are able to complete the cell cycle but show partially impaired chromosome segregation. We propose that amidase-processed peptidoglycan provides a landmark for RgsS to generate cell polarity in unipolarly growing Rhizobiales.


2021 ◽  
Author(s):  
Mathilde Guzzo ◽  
Allen G. Sanderlin ◽  
Lennice K. Castro ◽  
Michael T. Laub

AbstractIn every organism, the cell cycle requires the execution of multiple cellular processes in a strictly defined order. However, the mechanisms used to ensure such order remain poorly understood, particularly in bacteria. Here, we show that the activation of the essential CtrA signaling pathway that triggers cell division in Caulobacter crescentus is intrinsically coupled to the successful initiation of DNA replication via the physical translocation of a newly-replicated chromosome, powered by the ParABS system. We demonstrate that ParA accumulation at the new cell pole during chromosome segregation recruits ChpT, an intermediate component of the CtrA signaling pathway. ChpT is normally restricted from accessing the selective PopZ polar microdomain until the new chromosome and ParA arrive. Consequently, any disruption to DNA replication initiation prevents the recruitment of ChpT and, in turn, cell division. Collectively, our findings reveal how major cell-cycle events are coordinated in Caulobacter and, importantly, how the physical translocation of a chromosome triggers an essential signaling pathway.


Open Biology ◽  
2013 ◽  
Vol 3 (8) ◽  
pp. 130083 ◽  
Author(s):  
Anna Noatynska ◽  
Nicolas Tavernier ◽  
Monica Gotta ◽  
Lionel Pintard

Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.


1999 ◽  
Vol 181 (7) ◽  
pp. 1984-1993 ◽  
Author(s):  
Gregory T. Marczynski

ABSTRACT Caulobacter crescentus exhibits cell-type-specific control of chromosome replication and DNA methylation. Asymmetric cell division yields a replicating stalked cell and a nonreplicating swarmer cell. The motile swarmer cell must differentiate into a sessile stalked cell in order to replicate and execute asymmetric cell division. This program of cell division implies that chromosome replication initiates in the stalked cell only once per cell cycle. DNA methylation is restricted to the predivisional cell stage, and since DNA synthesis produces an unmethylated nascent strand, late DNA methylation also implies that DNA near the replication origin remains hemimethylated longer than DNA located further away. In this report, both assumptions are tested with an engineered Tn5-based transposon, Tn5Ω-MP. This allows a sensitive Southern blot assay that measures fully methylated, hemimethylated, and unmethylated DNA duplexes. Tn5Ω-MP was placed at 11 sites around the chromosome and it was clearly demonstrated that Tn5Ω-MP DNA near the replication origin remained hemimethylated longer than DNA located further away. One Tn5Ω-MP placed near the replication origin revealed small but detectable amounts of unmethylated duplex DNA in replicating stalked cells. Extra DNA synthesis produces a second unmethylated nascent strand. Therefore, measurement of unmethylated DNA is a critical test of the “once and only once per cell cycle” rule of chromosome replication inC. crescentus. Fewer than 1 in 1,000 stalked cells prematurely initiate a second round of chromosome replication. The implications for very precise negative control of chromosome replication are discussed with respect to the bacterial cell cycle.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Roxann A. Lerma ◽  
T. J. Tidwell ◽  
Jesse L. Cahill ◽  
Eric S. Rasche ◽  
Gabriel F. Kuty Everett

Podophage Percy infectsCaulobacter crescentus, a Gram-negative bacterium that divides asymmetrically and is a commonly used model organism to study the cell cycle, asymmetric cell division, and cell differentiation. Here, we announce the sequence and annotated complete genome of the phiKMV-like podophage Percy and note its prominent features.


Sign in / Sign up

Export Citation Format

Share Document