scholarly journals Engineered expression of the invertebrate-specific scorpion toxin AaHIT reduces adult longevity and female fecundity in the diamondback moth Plutella xylostella

2020 ◽  
Author(s):  
T.D. Harvey-Samuel ◽  
X. Xu ◽  
E. Lovett ◽  
T. Dafa’alla ◽  
A. Walker ◽  
...  

AbstractBACKGROUNDPrevious Genetic Pest Management (GPM) systems in diamondback moth (DBM) have relied on expressing lethal proteins (‘effectors’) that are ‘cell-autonomous’ i.e. do not leave the cell they are expressed in. To increase the flexibility of future GPM systems in DBM, we aimed to assess the use of a non cell-autonomous, invertebrate-specific, neurotoxic effector – the scorpion toxin AaHIT. This AaHIT effector was designed to be secreted by expressing cells, potentially leading to effects on distant cells, specifically neuromuscular junctions.RESULTSExpression of AaHIT caused a ‘shaking/quivering’ phenotype which could be repressed by provision of an antidote (tetracycline); a phenotype consistent with the AaHIT mode-of-action. This effect was more pronounced when AaHIT expression was driven by the Hr5/ie1 promoter (82.44% of males, 65.14% of females) rather than Op/ie2 (57.35% of males, 48.39% of females). Contrary to expectations, the shaking phenotype and observed fitness costs were limited to adults where they caused severe reductions in mean longevity (–81%) and median female fecundity (–93%). qPCR of AaHIT expression patterns and analysis of piggyBac-mediated transgene insertion sites suggest that restriction of observed effects to the adult stages may be due to influence of local genomic environment on the tetO-AaHIT transgene.CONCLUSIONWe have demonstrated the feasibility of using non cell-autonomous effectors within a GPM context for the first time in the Lepidoptera, one of the most economically damaging orders of insects. These findings provide a framework for extending this system to other pest Lepidoptera and to other secreted effectors.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunmiao Jiang ◽  
Gongbo Lv ◽  
Jinxin Ge ◽  
Bin He ◽  
Zhe Zhang ◽  
...  

AbstractGATA transcription factors (TFs) are involved in the regulation of growth processes and various environmental stresses. Although GATA TFs involved in abiotic stress in plants and some fungi have been analyzed, information regarding GATA TFs in Aspergillusoryzae is extremely poor. In this study, we identified and functionally characterized seven GATA proteins from A.oryzae 3.042 genome, including a novel AoSnf5 GATA TF with 20-residue between the Cys-X2-Cys motifs which was found in Aspergillus GATA TFs for the first time. Phylogenetic analysis indicated that these seven A. oryzae GATA TFs could be classified into six subgroups. Analysis of conserved motifs demonstrated that Aspergillus GATA TFs with similar motif compositions clustered in one subgroup, suggesting that they might possess similar genetic functions, further confirming the accuracy of the phylogenetic relationship. Furthermore, the expression patterns of seven A.oryzae GATA TFs under temperature and salt stresses indicated that A. oryzae GATA TFs were mainly responsive to high temperature and high salt stress. The protein–protein interaction network of A.oryzae GATA TFs revealed certain potentially interacting proteins. The comprehensive analysis of A. oryzae GATA TFs will be beneficial for understanding their biological function and evolutionary features and provide an important starting point to further understand the role of GATA TFs in the regulation of distinct environmental conditions in A.oryzae.


2004 ◽  
Vol 20 (1) ◽  
pp. 143-151 ◽  
Author(s):  
James Paris ◽  
Carl Virtanen ◽  
Zhibin Lu ◽  
Mark Takahashi

Although a great deal has been elucidated concerning the mechanisms regulating muscle differentiation, little is known about transcription factor-specific gene regulation. Our understanding of the genetic mechanisms regulating cell differentiation is quite limited. Much of what has been defined centers on regulatory signaling cascades and transcription factors. Surprisingly few studies have investigated the association of genes with specific transcription factors. To address these issues, we have utilized a method coupling chromatin immunoprecipitation and CpG microarrays to characterize the genes associated with MEF2 in differentiating C2C12 cells. Results demonstrated a defined binding pattern over the course of differentiation. Filtered data demonstrated 9 clones to be elevated at 0 h, 792 at 6 h, 163 by 1 day, and 316 at 3 days. Using unbiased selection parameters, we selected a subset of 291 prospective candidates. Clones were sequenced and filtered for removal of redundancy between clones and for the presence of repetitive elements. We were able to place 50 of these on the mouse genome, and 20 were found to be located near well-annotated genes. From this list, previously undefined associations with MEF2 were discovered. Many of these genes represent proteins involved in neurogenesis, neuromuscular junctions, signaling and metabolism. The remaining clones include many full-length cDNA and represent novel gene targets. The results of this study provides for the first time, a unique look at gene regulation at the level of transcription factor binding in differentiating muscle.


2006 ◽  
Vol 52 (6) ◽  
pp. 550-559 ◽  
Author(s):  
J Xu ◽  
D Baldwin ◽  
C Kindrachuk ◽  
D D Hegedus

The protease activity of a Zoophthora radicans strain that was highly infective toward Pieris brassicae (cabbage butterfly) larvae was compared with that of isogenic strains that were adapted to Plutella xylostella (diamondback moth) larvae through serial passage. All strains produced three distinct serine proteases ranging in size from 25 to 37 kDa; however, the original strain from P. brassicae also produced large amounts of an approximately 46 kDa metalloprotease. Subsequently, a cDNA encoding a 43 kDa (mature enzyme) zinc-dependent metalloprotease, ZrMEP1, was isolated from the original fungal strain and most likely corresponds to the 46 kDa protease observed with in-gel assays. ZrMEP1 possessed characteristics of both the fungalysin and thermolysin metalloprotease families found in some pulmonary and dermal pathogens. This is the first report of this type of metalloprotease from an entomo pathogenic fungus. A cDNA encoding a trypsin-like serine protease, ZrSP1, was also identified and was most similar to a serine protease from the plant pathogen Verticillium dahliae. In artificial media, ZrMEP1 and ZrSP1 were found to be differentially responsive to gelatin and catabolite repression in the fungal strains adapted to P. brassicae and P. xylostella, but their expression patterns within infected larvae were the same. It appears that while these proteases likely play a role in the infection process, they may not be major host specificity determinants.Key words: Zoophthora radicans, metalloprotease, serine protease, pathogenesis, entomopathogen, host specificity.


2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Hao Zhou ◽  
Shun Chen ◽  
Yulin Qi ◽  
Qin Zhou ◽  
Mingshu Wang ◽  
...  

Interferonγreceptor 1 (IFNGR1) and IFNGR2 are two cell membrane molecules belonging to class II cytokines, which play important roles in the IFN-mediated antiviral signaling pathway. Here, goose IFNGR1 and IFNGR2 were cloned and identified for the first time. Tissue distribution analysis revealed that relatively high levels of goose IFNγmRNA transcripts were detected in immune tissues, including the harderian gland, cecal tonsil, cecum, and thymus. Relatively high expression levels of both IFNGR1 and IFNGR2 were detected in the cecal tonsil, which implicated an important role of IFNγin the secondary immune system of geese. No specific correlation between IFNγ, IFNGR1, and IFNGR2 expression levels was observed in the same tissues of healthy geese. IFNγand its cognate receptors showed different expression profiles, although they appeared to maintain a relatively balanced state. Furthermore, the agonist R848 led to the upregulation of goose IFNγbut did not affect the expression of goose IFNGR1 or IFNGR2. In summary, trends in expression of goose IFNγand its cognate receptors showed tissue specificity, as well as an age-related dependency. These findings may help us to better understand the age-related susceptibility to pathogens in birds.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3955 ◽  
Author(s):  
Yiling Niu ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
Jingfu Li

Solanum lycopersicum, belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, Arabidopsis, rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of Arabidopsis and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth.


2019 ◽  
Vol 47 (14) ◽  
pp. e82-e82
Author(s):  
Choong Yong Ung ◽  
Mehrab Ghanat Bari ◽  
Cheng Zhang ◽  
Jingjing Liang ◽  
Cristina Correia ◽  
...  

Abstract With the emergence of genome editing technologies and synthetic biology, it is now possible to engineer genetic circuits driving a cell's phenotypic response to a stressor. However, capturing a continuous response, rather than simply a binary ‘on’ or ‘off’ response, remains a bioengineering challenge. No tools currently exist to identify gene candidates responsible for predetermining and fine-tuning cell response phenotypes. To address this gap, we devised a novel Regulostat Inferelator (RSI) algorithm to decipher intrinsic molecular devices or networks that predetermine cellular phenotypic responses. The RSI algorithm is designed to extract gene expression patterns from basal transcriptomic data in order to identify ‘regulostat’ constituent gene pairs, which exhibit rheostat-like mode-of-cooperation capable of fine-tuning cellular response. Our proof-of-concept study provides computational evidence for the existence of regulostats and that these networks predetermine cellular response prior to exposure to a stressor or drug. In addition, our work, for the first time, provides evidence of context-specific, drug–regulostat interactions in predetermining drug response phenotypes in cancer cells. Given RSI-inferred regulostat networks offer insights for prioritizing gene candidates capable of rendering a resistant phenotype sensitive to a given drug, we envision that this tool will be of great value in bioengineering and medicine.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Anqi Wang ◽  
Lipei Sun ◽  
Mingshu Wang ◽  
Renyong Jia ◽  
Dekang Zhu ◽  
...  

As interferon-stimulated genes (ISGs), interferon-inducible transmembrane proteins 1 and 3 (IFITM1 and IFITM3) can effectively inhibit the replication of multiple viruses. Here, goose IFITM1 and IFITM3 were cloned and identified for the first time. The two proteins share the same topological structure and several important sites critical for the antiviral functions in other species are conserved in the goose. Goose IFITM1 and IFITM3 are most closely related to their respective orthologs in ducks; these proteins exhibited high mRNA transcript levels in immune-related tissues, including the thymus, bursa of Fabricius, and Harderian gland, compared to other tissues. Moreover, goose IFITM1 was highly constitutively expressed in gastrointestinal tract tissues, while goose IFITM3 was expressed in respiratory organs. Furthermore, goose IFITM3 was activated in goose peripheral blood mononuclear cells (PBMCs) infected with Tembusu virus (TMUV) or treated with Toll-like receptors (TLRs) agonists, while only the R848 and Poly (I:C) agonists induced significant upregulation of goose IFITM1. Furthermore, goose IFITM1 and IFITM3 were upregulated in the sampled tissues, to some extent, after TMUV infection. Notably, significant upregulation of goose IFITM1 and IFITM3 was detected in the cecum and cecal tonsil, where TMUV was primarily distributed. These data provide new insights into the immune effectors in geese and promote our understanding of the role of IFITM1 and IFITM3 in the defense against TMUV.


PLoS Genetics ◽  
2006 ◽  
Vol 2 (9) ◽  
pp. e151 ◽  
Author(s):  
Laura Carrel ◽  
Chungoo Park ◽  
Svitlana Tyekucheva ◽  
John Dunn ◽  
Francesca Chiaromonte ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
Author(s):  
Shuhui Fu ◽  
Fangyuan Li ◽  
Xizhong Yan ◽  
Chi Hao

Abstract The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) is one of the most destructive pests to cruciferous plants worldwide. The oligophagous moth primarily utilizes its host volatiles for foraging and oviposition. Chemosensory proteins (CSPs) are soluble carrier proteins with low molecular weight, which recognize and transport various semiochemicals in insect chemoreception. At present, there is limited information on the recognition of host volatiles by CSPs of P. xylostella. Here, we investigated expression patterns and binding characteristics of PxylCSP11 in P. xylostella. The open reading frame of PxylCSP11 was 369-bp encoding 122 amino acids. PxylCSP11 possessed four conserved cysteines, which was consistent with the typical characteristic of CSPs. PxylCSP11 was highly expressed in antennae, and the expression level of PxylCSP11 in male antennae was higher than that in female antennae. Fluorescence competitive binding assays showed that PxylCSP11 had strong binding abilities to several ligands, including volatiles of cruciferous plants, and (Z)-11-hexadecenyl acetate (Z11-16:Ac), a major sex pheromone of P. xylostella. Our results suggest that PxylCSP11 may play an important role in host recognition and spouse location in P. xylostella.


Sign in / Sign up

Export Citation Format

Share Document