Serine proteases and metalloproteases associated with pathogenesis but not host specificity in the Entomophthoralean fungus Zoophthora radicans

2006 ◽  
Vol 52 (6) ◽  
pp. 550-559 ◽  
Author(s):  
J Xu ◽  
D Baldwin ◽  
C Kindrachuk ◽  
D D Hegedus

The protease activity of a Zoophthora radicans strain that was highly infective toward Pieris brassicae (cabbage butterfly) larvae was compared with that of isogenic strains that were adapted to Plutella xylostella (diamondback moth) larvae through serial passage. All strains produced three distinct serine proteases ranging in size from 25 to 37 kDa; however, the original strain from P. brassicae also produced large amounts of an approximately 46 kDa metalloprotease. Subsequently, a cDNA encoding a 43 kDa (mature enzyme) zinc-dependent metalloprotease, ZrMEP1, was isolated from the original fungal strain and most likely corresponds to the 46 kDa protease observed with in-gel assays. ZrMEP1 possessed characteristics of both the fungalysin and thermolysin metalloprotease families found in some pulmonary and dermal pathogens. This is the first report of this type of metalloprotease from an entomo pathogenic fungus. A cDNA encoding a trypsin-like serine protease, ZrSP1, was also identified and was most similar to a serine protease from the plant pathogen Verticillium dahliae. In artificial media, ZrMEP1 and ZrSP1 were found to be differentially responsive to gelatin and catabolite repression in the fungal strains adapted to P. brassicae and P. xylostella, but their expression patterns within infected larvae were the same. It appears that while these proteases likely play a role in the infection process, they may not be major host specificity determinants.Key words: Zoophthora radicans, metalloprotease, serine protease, pathogenesis, entomopathogen, host specificity.


Development ◽  
1993 ◽  
Vol 119 (4) ◽  
pp. 1119-1134 ◽  
Author(s):  
I.M. Mansuy ◽  
H. van der Putten ◽  
P. Schmid ◽  
M. Meins ◽  
F.M. Botteri ◽  
...  

Protease Nexin-1 (PN-1) also known as Glia-Derived Nexin (GDN) inhibits the activity of several serine proteases including thrombin, tissue (tPA)- and urokinase (uPA)-type plasminogen activators. These and other serine proteases seem to play roles in development and tissue homeostasis. To gain insight into where and when PN-1 might counteract serine protease activities in vivo, we examined its mRNA and protein expression in the mouse embryo, postnatal developing nervous system and adult tissues. These analyses revealed distinct temporal and spatial PN-1 expression patterns in developing cartilage, lung, skin, urogenital tract, and central and peripheral nervous system. In the embryonic spinal cord, PN-1 expression occurs in cells lining the neural canal that are different from the cells previously shown to express tPA. In the developing postnatal brain, PN-1 expression appears transiently in many neuronal cell populations. These findings suggest a role for PN-1 in the maturation of the central nervous system, a phase that is accompanied by the appearance of different forms of PN-1. In adults, few distinct neuronal cell populations like pyramidal cells of the layer V in the neocortex retained detectable levels of PN-1 expression. Also, mRNA and protein levels did not correspond in adult spleen and muscle tissues. The widespread and complex regulation of PN-1 expression during embryonic development and, in particular, in the early postnatal nervous system as well as in adult tissues suggests multiple roles for this serine protease inhibitor in organogenesis and tissue homeostasis.



Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 378 ◽  
Author(s):  
Jia-min Wu ◽  
Rong-er Zheng ◽  
Rui-juan Zhang ◽  
Jin-liang Ji ◽  
Xiao-ping Yu ◽  
...  

Clip domain serine proteases play vital roles in various innate immune functions and in embryonic development. Nilaparvata lugens proclotting enzymes (NlPCEs) belong to this protease family. NlPCE1 was reported to be involved in innate immunity, whereas the role of other NlPCEs is unclear. In the present study, N. lugens proclotting enzyme-3 (NlPCE3) was cloned and characterized. NlPCE3 contains a signal peptide, a clip domain, and a trypsin-like serine protease domain. NlPCE3 was expressed in all tissues examined (gut, fat body, and ovary), and at all developmental stages. Immunofluorescence staining showed that NlPCE3 was mainly expressed in the cytoplasm and cytomembrane of follicular cells. Double stranded NlPCE3 RNA interference clearly inhibited the expression of NlPCE3, resulting in abnormal egg formation and obstruction of ovulation. These results indicate that NlPCE3 plays an important role in egg production in N. lugens.



Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5070-5077 ◽  
Author(s):  
Patrik Wahlberg ◽  
Åsa Nylander ◽  
Nina Ahlskog ◽  
Kui Liu ◽  
Tor Ny

Proteolytic degradation of extracellular matrix components has been suggested to play an essential role in the occurrence of ovulation. Recent studies in our laboratory have indicated that the plasminogen activator and matrix metalloproteinase systems, which were previously believed to be crucial for ovulation, are not required in this process. In this study we have used a microarray approach to identify new proteases that are involved in ovulation. We found three serine proteases that were relatively highly expressed during ovulation: high-temperature requirement factor A1 (HtrA1), which was not regulated much during ovulation; serine protease 23 (PRSS23), which was down-regulated by gonadotropins; and serine protease 35 (PRSS35), which was up-regulated by gonadotropins. We have further investigated the expression patterns of these proteases during gonadotropin-induced ovulation in immature mice and in the corpus luteum (CL) of pseudopregnant mice. We found that HtrA1 was highly expressed in granulosa cells throughout follicular development and ovulation, as well as in the forming and regressing CL. PRSS23 was highly expressed in atretic follicles, and it was expressed in the ovarian stroma and theca tissues just before ovulation. PRSS35 was expressed in the theca layers of developing follicles. It was also highly induced in granulosa cells of preovulatory follicles. PRSS35 was also expressed in the forming and regressing CL. These data suggest that HtrA1 and PRSS35 may be involved in ovulation and CL formation and regression, and that PRSS23 may play a role in follicular atresia.



2010 ◽  
Vol 17 (4) ◽  
pp. 660-667 ◽  
Author(s):  
Rajdeep Choudhury ◽  
Partha Das ◽  
Siddhartha Kumar Bhaumik ◽  
Tripti De ◽  
Tapati Chakraborti

ABSTRACT Proteases have been found to play essential roles in many biological processes, including the pathogenesis of leishmaniasis. Most parasites rely on their intracellular and extracellular protease repertoire to invade and multiply in mammalian host cells. However, few studies have addressed serine proteases in Leishmania and their role in host pathogenesis. Here we report the intracellular distribution of a novel L. donovani secretory serine protease in the flagellar pocket, as determined by immunogold labeling. Flow cytometry and confocal immunofluorescence analysis revealed that the expression of the protease diminishes sequentially from virulent to attenuated strains of this species and is also highly associated with the metacyclic stage of L. donovani promastigotes. The level of internalization of parasites treated with the anti-115-kDa antibody into host macrophages was significantly reduced from that of non-antibody-treated parasites, suggesting that this serine protease probably plays a role in the infection process. In vivo studies confirmed that this serine protease is a potential vaccine candidate. Altogether, the 115-kDa serine protease might play vital roles in L. donovani pathogenesis and hence could be recognized as a potential candidate for drug design.



2006 ◽  
Vol 26 (3) ◽  
pp. 965-975 ◽  
Author(s):  
Tom S. Kim ◽  
Cynthia Heinlein ◽  
Robert C. Hackman ◽  
Peter S. Nelson

ABSTRACT Tmprss2 encodes an androgen-regulated type II transmembrane serine protease (TTSP) expressed highly in normal prostate epithelium and has been implicated in prostate carcinogenesis. Although in vitro studies suggest protease-activated receptor 2 may be a substrate for TMPRSS2, the in vivo biological activities of TMPRSS2 remain unknown. We generated Tmprss2 −/− mice by disrupting the serine protease domain through homologous recombination. Compared to wild-type littermates, Tmprss2 −/− mice developed normally, survived to adulthood with no differences in protein levels of prostatic secretions, and exhibited no discernible abnormalities in organ histology or function. Loss of TMPRSS2 serine protease activity did not influence fertility, reduce survival, result in prostate hyperplasia or carcinoma, or alter prostatic luminal epithelial cell regrowth following castration and androgen replacement. Lack of an observable phenotype in Tmprss2 −/− mice was not due to transcriptional compensation by closely related Tmprss2 homologs. We conclude that the lack of a discernible phenotype in Tmprss2 −/− mice suggests functional redundancy involving one or more of the type II transmembrane serine protease family members or other serine proteases. Alternatively, TMPRSS2 may contribute a specialized but nonvital function that is apparent only in the context of stress, disease, or other systemic perturbation.



2021 ◽  
Vol 7 (4) ◽  
pp. 272
Author(s):  
Felicia Adelina Stanford ◽  
Nina Matthias ◽  
Zoltán Cseresnyés ◽  
Marc Thilo Figge ◽  
Mohamed I. Abdelwahab Hassan ◽  
...  

Iron is an essential micronutrient for most organisms and fungi are no exception. Iron uptake by fungi is facilitated by receptor-mediated internalization of siderophores, heme and reductive iron assimilation (RIA). The RIA employs three protein groups: (i) the ferric reductases (Fre5 proteins), (ii) the multicopper ferroxidases (Fet3) and (iii) the high-affinity iron permeases (Ftr1). Phenotyping under different iron concentrations revealed detrimental effects on spore swelling and hyphal formation under iron depletion, but yeast-like morphology under iron excess. Since access to iron is limited during pathogenesis, pathogens are placed under stress due to nutrient limitations. To combat this, gene duplication and differential gene expression of key iron uptake genes are utilized to acquire iron against the deleterious effects of iron depletion. In the genome of the human pathogenic fungus L. corymbifera, three, four and three copies were identified for FRE5, FTR1 and FET3 genes, respectively. As in other fungi, FET3 and FTR1 are syntenic and co-expressed in L. corymbifera. Expression of FRE5, FTR1 and FET3 genes is highly up-regulated during iron limitation (Fe-), but lower during iron excess (Fe+). Fe- dependent upregulation of gene expression takes place in LcFRE5 II and III, LcFTR1 I and II, as well as LcFET3 I and II suggesting a functional role in pathogenesis. The syntenic LcFTR1 I–LcFET3 I gene pair is co-expressed during germination, whereas LcFTR1 II- LcFET3 II is co-expressed during hyphal proliferation. LcFTR1 I, II and IV were overexpressed in Saccharomyces cerevisiae to represent high and moderate expression of intracellular transport of Fe3+, respectively. Challenge of macrophages with the yeast mutants revealed no obvious role for LcFTR1 I, but possible functions of LcFTR1 II and IVs in recognition by macrophages. RIA expression pattern was used for a new model of interaction between L. corymbifera and macrophages.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Duboux ◽  
M. Golliard ◽  
J. A. Muller ◽  
G. Bergonzelli ◽  
C. J. Bolten ◽  
...  

AbstractThe Serine Protease Inhibitor (serpin) protein has been suggested to play a key role in the interaction of bifidobacteria with the host. By inhibiting intestinal serine proteases, it might allow bifidobacteria to reside in specific gut niches. In inflammatory diseases where serine proteases contribute to the innate defense mechanism of the host, serpin may dampen the damaging effects of inflammation. In view of the beneficial roles of this protein, it is important to understand how its production is regulated. Here we demonstrate that Bifidobacterium longum NCC 2705 serpin production is tightly regulated by carbohydrates. Galactose and fructose increase the production of this protein while glucose prevents it, suggesting the involvement of catabolite repression. We identified that di- and oligosaccharides containing galactose (GOS) and fructose (FOS) moieties, including the human milk oligosaccharide Lacto-N-tetraose (LNT), are able to activate serpin production. Moreover, we show that the carbohydrate mediated regulation is conserved within B. longum subsp. longum strains but not in other bifidobacterial taxons harboring the serpin coding gene, highlighting that the serpin regulation circuits are not only species- but also subspecies- specific. Our work demonstrates that environmental conditions can modulate expression of an important effector molecule of B. longum, having potential important implications for probiotic manufacturing and supporting the postulated role of serpin in the ability of bifidobacteria to colonize the intestinal tract.



2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract





Sign in / Sign up

Export Citation Format

Share Document