scholarly journals Identification of Type II Interferon Receptors in Geese: Gene Structure, Phylogenetic Analysis, and Expression Patterns

2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Hao Zhou ◽  
Shun Chen ◽  
Yulin Qi ◽  
Qin Zhou ◽  
Mingshu Wang ◽  
...  

Interferonγreceptor 1 (IFNGR1) and IFNGR2 are two cell membrane molecules belonging to class II cytokines, which play important roles in the IFN-mediated antiviral signaling pathway. Here, goose IFNGR1 and IFNGR2 were cloned and identified for the first time. Tissue distribution analysis revealed that relatively high levels of goose IFNγmRNA transcripts were detected in immune tissues, including the harderian gland, cecal tonsil, cecum, and thymus. Relatively high expression levels of both IFNGR1 and IFNGR2 were detected in the cecal tonsil, which implicated an important role of IFNγin the secondary immune system of geese. No specific correlation between IFNγ, IFNGR1, and IFNGR2 expression levels was observed in the same tissues of healthy geese. IFNγand its cognate receptors showed different expression profiles, although they appeared to maintain a relatively balanced state. Furthermore, the agonist R848 led to the upregulation of goose IFNγbut did not affect the expression of goose IFNGR1 or IFNGR2. In summary, trends in expression of goose IFNγand its cognate receptors showed tissue specificity, as well as an age-related dependency. These findings may help us to better understand the age-related susceptibility to pathogens in birds.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Anqi Wang ◽  
Lipei Sun ◽  
Mingshu Wang ◽  
Renyong Jia ◽  
Dekang Zhu ◽  
...  

As interferon-stimulated genes (ISGs), interferon-inducible transmembrane proteins 1 and 3 (IFITM1 and IFITM3) can effectively inhibit the replication of multiple viruses. Here, goose IFITM1 and IFITM3 were cloned and identified for the first time. The two proteins share the same topological structure and several important sites critical for the antiviral functions in other species are conserved in the goose. Goose IFITM1 and IFITM3 are most closely related to their respective orthologs in ducks; these proteins exhibited high mRNA transcript levels in immune-related tissues, including the thymus, bursa of Fabricius, and Harderian gland, compared to other tissues. Moreover, goose IFITM1 was highly constitutively expressed in gastrointestinal tract tissues, while goose IFITM3 was expressed in respiratory organs. Furthermore, goose IFITM3 was activated in goose peripheral blood mononuclear cells (PBMCs) infected with Tembusu virus (TMUV) or treated with Toll-like receptors (TLRs) agonists, while only the R848 and Poly (I:C) agonists induced significant upregulation of goose IFITM1. Furthermore, goose IFITM1 and IFITM3 were upregulated in the sampled tissues, to some extent, after TMUV infection. Notably, significant upregulation of goose IFITM1 and IFITM3 was detected in the cecum and cecal tonsil, where TMUV was primarily distributed. These data provide new insights into the immune effectors in geese and promote our understanding of the role of IFITM1 and IFITM3 in the defense against TMUV.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7728 ◽  
Author(s):  
Junmin Wang ◽  
Yanyun Yan ◽  
Zhiqi Zhang ◽  
Yali Li

Breast cancer is the leading cause of cancer-related death in women worldwide. Aberrant expression levels of miR-10b-5p in breast cancer has been reported while the molecular mechanism of miR-10b-5p in tumorigenesis remains elusive. Therefore, this study was aimed to investigate the role of miR-10b-5p in breast cancer and the network of its target genes using bioinformatics analysis. In this study, the expression profiles and prognostic value of miR-10b-5p in breast cancer were analyzed from public databases. Association between miR-10b-5p and clinicopathological parameters were analyzed by non-parametric test. Moreover, the optimal target genes of miR-10b-5p were obtained and their expression patterns were examined using starBase and HPA database. Additionally, the role of these target genes in cancer development were explored via Cancer Hallmarks Analytics Tool (CHAT). The protein–protein interaction (PPI) networks were constructed to further investigate the interactive relationships among these genes. Furthermore, GO, KEGG pathway and Reactome pathway analyses were carried out to decipher functions of these target genes. Results demonstrated that miR-10b-5p was down-regulated in breast cancer and low expression of miR-10b-5p was significantly correlated to worse outcome. Five genes, BIRC5, E2F2, KIF2C, FOXM1, and MCM5, were considered as potential key target genes of miR-10b-5p. As expected, higher expression levels of these genes were observed in breast cancer tissues than in normal tissues. Moreover, analysis from CHAT revealed that these genes were mainly involved in sustaining proliferative signaling in cancer development. In addition, PPI networks analysis revealed strong interactions between target genes. GO, KEGG, and Reactome pathway analysis suggested that these target genes of miR-10b-5p in breast cancer were significantly involved in cell cycle. Predicted target genes were further validated by qRT-PCR analysis in human breast cancer cell line MDA-MB-231 transfected with miR-10b mimic or antisense inhibitors. Taken together, our data suggest that miR-10b-5p functions to impede breast carcinoma progression via regulation of its key target genes and hopefully serves as a potential diagnostic and prognostic marker for breast cancer.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunmiao Jiang ◽  
Gongbo Lv ◽  
Jinxin Ge ◽  
Bin He ◽  
Zhe Zhang ◽  
...  

AbstractGATA transcription factors (TFs) are involved in the regulation of growth processes and various environmental stresses. Although GATA TFs involved in abiotic stress in plants and some fungi have been analyzed, information regarding GATA TFs in Aspergillusoryzae is extremely poor. In this study, we identified and functionally characterized seven GATA proteins from A.oryzae 3.042 genome, including a novel AoSnf5 GATA TF with 20-residue between the Cys-X2-Cys motifs which was found in Aspergillus GATA TFs for the first time. Phylogenetic analysis indicated that these seven A. oryzae GATA TFs could be classified into six subgroups. Analysis of conserved motifs demonstrated that Aspergillus GATA TFs with similar motif compositions clustered in one subgroup, suggesting that they might possess similar genetic functions, further confirming the accuracy of the phylogenetic relationship. Furthermore, the expression patterns of seven A.oryzae GATA TFs under temperature and salt stresses indicated that A. oryzae GATA TFs were mainly responsive to high temperature and high salt stress. The protein–protein interaction network of A.oryzae GATA TFs revealed certain potentially interacting proteins. The comprehensive analysis of A. oryzae GATA TFs will be beneficial for understanding their biological function and evolutionary features and provide an important starting point to further understand the role of GATA TFs in the regulation of distinct environmental conditions in A.oryzae.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 13-14
Author(s):  
Anna K Goldkamp ◽  
Yahan Li ◽  
Rocio M Rivera ◽  
Darren Hagen

Abstract Differentially methylated regions (DMRs) have been associated with Large Offspring Syndrome (LOS) in cattle. Some DMRs overlap transfer RNA (tRNA) gene clusters, potentially altering tRNA expression patterns uniquely by treatment group or tissue type. tRNAs are classified as adapter molecules, serving a key role in the translational machinery implementing genetic code. Variation in tRNA expression has been identified in several disease pathways suggesting an important role in the regulation of biological processes. tRNAs also serve as a source of small non-coding RNAs. To better understand the role of tRNA expression in LOS, total RNA was extracted from skeletal muscle and liver of 105-day fetuses and the tRNAs sequenced. Although there are nearly three times the number of tRNA genes in cattle as compared to human (1,659 vs 597), there is a shared occurrence of transcriptionally silent tRNA genes in both species. This study detected expression of 474 and 487 bovine tRNA genes in skeletal muscle and liver, respectively, with the remainder being very lowly expressed or transcriptionally silent. Eleven tRNA isodecoders are transcriptionally silent in both skeletal muscle and liver and another isodecoder is silent in the liver (SerGGA). Further, the highest expressed isodecoders differ by treatment or tissue type with roughly half correlated to codon frequency. While the absence of certain isodecoders may be relieved by wobble base pairing, missing tRNA species could likely increase the likelihood of mistranslation or mRNA degradation. Differential expression of tissue- and treatment-specific tRNA genes may modulate translation during protein homeostasis or cellular stress, altering regulatory products targeting genes associated with overgrowth in skeletal muscle and/or tumor development in the liver of LOS individuals.


2016 ◽  
pp. 1003 ◽  
Author(s):  
Masoumeh Falah ◽  
Mohammad Najafi ◽  
Massoud Houshmand ◽  
Mohammad Farhadi

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xia Tang ◽  
Delong Feng ◽  
Min Li ◽  
Jinxue Zhou ◽  
Xiaoyuan Li ◽  
...  

Abstract Fully elucidating the molecular mechanisms of non-coding RNAs (ncRNAs), including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), underlying hepatocarcinogenesis is challenging. We characterized the expression profiles of ncRNAs and constructed a regulatory mRNA-lncRNA-miRNA (MLMI) network based on transcriptome sequencing (RNA-seq) of hepatocellular carcinoma (HCC, n = 9) patients. Of the identified miRNAs (n = 203) and lncRNAs (n = 1,090), we found 16 significantly differentially expressed (DE) miRNAs and three DE lncRNAs. The DE RNAs were highly enriched in 21 functional pathways implicated in HCC (p < 0.05), including p53, MAPK, and NAFLD signaling. Potential pairwise interactions between DE ncRNAs and mRNAs were fully characterized using in silico prediction and experimentally-validated evidence. We for the first time constructed a MLMI network of reciprocal interactions for 16 miRNAs, three lncRNAs, and 253 mRNAs in HCC. The predominant role of MEG3 in the MLMI network was validated by its overexpression in vitro that the expression levels of a proportion of MEG3-targeted miRNAs and mRNAs was changed significantly. Our results suggested that the comprehensive MLMI network synergistically modulated carcinogenesis, and the crosstalk of the network provides a new avenue to accurately describe the molecular mechanisms of hepatocarcinogenesis.


2018 ◽  
Vol 26 (11) ◽  
pp. 1429-1438 ◽  
Author(s):  
Kai-Lun Hu ◽  
Hongcui Zhao ◽  
Zheying Min ◽  
Yilei He ◽  
Tianjie Li ◽  
...  

Kisspeptins are a family of neuropeptides that are essential for fertility. Recent experimental data suggest a putative role of kisspeptin signaling in the direct control of ovarian function. To explore the expression of KISS1 and KISS1 receptor (KISS1R) in human granulosa lutein cells and the potential role of KISS1/KISS1R system in the pathogenesis of polycystic ovary syndrome (PCOS), we measured the concentration of KISS1 in follicular fluid, the expression of KISS1 and KISS1R in granulosa lutein cells, and the circulating hormones. The expression levels of KISS1 and KISS1R were significantly upregulated in human granulosa lutein cells obtained from women with PCOS. The expression levels of KISS1 in human granulosa lutein cells highly correlated with those of KISS1R in non-PCOS patients, but not in patients with PCOS, most likely due to the divergent expression patterns in women with PCOS. Additionally, the expression levels of KISS1 highly correlated with the serum levels of anti-Müllerian hormone (AMH). The expression levels of KISS1 and KISS1R, as well as the follicular fluid levels of KISS1, were not significantly different between the pregnant and nonpregnant patients in both PCOS and non-PCOS groups. In conclusion, the increased expression of KISS1 and KISS1R in human granulosa lutein cells may contribute to the pathogenesis of PCOS. The expression levels of KISS1 highly correlated with the serum levels of AMH. The KISS1 and KISS1R system in the ovary may not have a remarkable role in predicting the in vitro fertilization (IVF) outcome.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4159-4159
Author(s):  
Francisco P. Careta ◽  
Rodrigo A. Panepucci ◽  
Daniel M Matos ◽  
Rodrigo Proto-Siqueira ◽  
Wilson A. Silva-Junior ◽  
...  

Abstract Introduction: Absence of mutations in IgVH genes or higher number of ZAP70+ cells (as a surrogate marker) in chronic lymphocytic leukemia (CLL) B-cells defines a patient group with a poorer clinical course. These features relate to the role of BCR signalling in the proliferation and survival of CLL B-cells, and establish a link between these markers and the biology of CLL prognostic subgroups. The identification of additional players in this context may help to better understand the molecular basis of this disease and contribute to develop new therapeutic approaches. A search for genes potentially related to BCR signalling, when comparing mutated and unmutated CLL cases using serial analysis of gene expression, revealed a 4-fold increase of CD72 tags in unmutated samples, a specific B cell surface glycoprotein known to transmit both positive and negative signals in BCR signalling. Objective: This finding lead us to explore the potential role of CD72 on BCR signalling in distinct CLL prognostic subgroups, as defined by ZAP70 expression. Methods: Percentage of ZAP70+ and CD72+ cells were evaluated by flow cytometry on gated CD19+CD5+ cells in 25 CLL samples. Positive cases for ZAP70 and CD72 were defined using a cut-off of 35% and 40% positive cells, respectively. Real time PCR was used to quantify the expression levels of 3 genes related to proliferation and survival, RELB, Beta-Catenin (CTNNB1) and AKT1, on 16 CD19+ enriched (purity &gt; 90%) CLL samples. Results: Samples were classified as 11 ZAP70+ and 14 ZAP70−. Median percentage of CD72+ cells in ZAP70+ was significantly higher than for ZAP70− cases (82% compared to 39%, respectively, P=0.0029). Furthermore, percentages of CD72 and ZAP70 were positively correlated (r=0.5930 and P=0.0009). Interestingly, ZAP70+ cases were restricted to CD72+ cases (n=11, CD72+ZAP70+ [+/+]), whereas six CD72+ cases were ZAP70− (ZAP70−CD72+ [−/+]). Finally, there were 8 cases CD72−ZAP70− [−/−]. No differences among these 3 groups were observed in regard to laboratory parameters (white blood cells, total lymphocytes, lymphocyte percentage, haemoglobin, haematocrit and platelet number). Despite the reduced number of samples analysed (6 +/+, 6 −/− and 4 −/+), transcripts for RELB (P&lt;0.05), CTNNB1 (P&lt;0.05), and AKT1(P=0.057) were expressed at higher levels in ZAP70+CD72+ than in ZAP70−CD72+ samples. Additionally, the transcripts were expressed at higher levels in ZAP70−CD72− than in ZAP70−CD72+ samples, and this difference was statistically significant (P&lt;0.05) for CTNB1 and AKT1, but not for RELB (P=0.054). Conclusion: Our data indicate that higher percentages of ZAP70+ cells are associated with higher expression levels of transcripts related to proliferation and survival of CLL B-cells. In the absence of ZAP70 expression, CD72 may act as a negative regulator of the BCR pathway, as indicated by the lowest levels of transcripts on ZAP70−CD72+ cases.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 46-46
Author(s):  
Loic Ysebaert ◽  
Mary Poupot ◽  
Yovan Sanchez-Ruiz ◽  
Camille Laurent ◽  
Guy Laurent ◽  
...  

Abstract Abstract 46 Introduction: CLL cells interact with many accessory cells in an environment mimicking that of normal mature B cells. Role of antigen, cytokines, adhesion pathways are critical for many aspects in the disease course (proliferation/survival, migration or homing, drug resistance, and presumably relapse). Nurse-like cells (NLC) belong to a monocytic-derived, bystander population among CLL lymph node and spleen stromal cells. Aim: To investigate the nature, functions, and location of NLC within CLL microenvironment. Methods: Gene expression profiles (GEP) from in vitro expanded NLC from patients (n=10) were produced and compared to those from normal CD14+ monocytes, M1-polarized macrophages, M2-polarized macrophages and tumor-associated macrophages (produced in the lab or downloaded from GEO datasets). Principal Component Analysis was used to categorize these five populations of cells and in-house-built GSEA software was used for functional interpretation of their relevant gene lists. Protein expression patterns were validated with multi-analyte ELISArray kits, proteome profiler arrays, flow cytometry (FC) or immunohistochemistry (IHC). Results: New insights into the physiopathological role of NLC in CLL are suggested from five lines of evidence: 1/a Òmonocytic gene signatureÓ (i.e. a set of 549 genes) is shared by the NLC and the monocyte subtypes. The genes over-represented in NLC vs normal monocytes pinpointed positive modulation of apoptotic cell clearance (scavenger, mannose and complement receptors, LXRalpha), lipid metabolism (Apolipoprotein E, PPAR signaling), extracellular matrix-receptor interactions (integrins, SPARC, Matrix MetalloProteinases) and actin cytoskeleton remodeling. 2/unsupervised clustering show that NLC represent an M2-skewed, TAM-like cell population. They down-regulate mRNA and proteins for classic M1 inflammatory markers (e.g. IL-1, IL-6, IL-12, COX2) while increase secretion of TGFbeta, IL-10, CCL17 and CCL22 soluble factors. 3/these and previously published observations suggest that B-CLL-to-NLC interactions may orchestrate immunosuppression in this disease. PBMCs from Òwatch and waitÓ CLL patients (all stage A/Rai 0, mutated IgVH, low risk cytogenetics profile) or healthy donors were stimulated with anti-CD3/CD28 beads + IL-2, either in standard RPMI+10% FCS or in conditioned medium (CM, after 14d CLL-NLC co-culture in vitro) and their proliferation/phenotype were compared after 2 weeks. Significant expansion of T cells with Treg (CD4+CD25+FoxP3+) phenotype was observed only from CLL PBMCs grown in conditioned medium (mean % Treg: 2.85 vs 3.05 in CM for normal PBMCs, and 1.54 vs 15.9 in CM for CLL PBMCs, P< 0.05). 4/although NLC make immune synapses with live B-CLL, they do not phagocytose them. Over-expression of CD47 (ÒdonÕt eat meÓ signal) by B-CLL cells (mfi= 3490 vs 2581 on normal cells, P< 0.05, n=18) may provide them with a protective signal against NLC. 5/from our GEP, flow cytometric and IHC analyses, we propose CD163 (classic M2 marker) as a reliable tool to identify NLC in vivo. Although in vitro, CLL cells can pervert healthy donor monocytes into NLC, only CLL-derived NLC are truly CD14+ CD163+. In vivo, CD163 staining reveals putative NLC in CLL lymph nodes(LN)/spleen sections but not in bone marrow. In LN from all patients, NLC reside in the subcapsular areas and line vessel structures, suggesting a role in CLL cells trafficking. Most interestingly, NLC infiltrate pseudofollicles structures only in a subset of cases. We will present updated IHC and clinical presentation correlation studies. Conclusions: Our results suggest that the role of NLC in CLL might be broader than initially thought. Beside of nursing and conferring drug resistance, NLC may also be crucial in the setting of immunosuppression, of CLL cells recruitment, and should thus be considered as therapeutic targets. Disclosures: Off Label Use: GA101 is not currently approved for CLL treatment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3020-3020
Author(s):  
Alicia Báez ◽  
Beatriz Martin-Antonio ◽  
Concepción Prats-Martín ◽  
Isabel Álvarez-Laderas ◽  
María Victoria Barbado ◽  
...  

Abstract Abstract 3020 Introduction: Hematopoietic progenitors cells (HPCs) used in allogenic transplantation (allo-HSCT) may have different biological properties depending on their source of origin: mobilized peripheral blood (PB), bone marrow (BM) or umbilical cord (UC), which may be reflected in miRNAs or gene expression. The identification of different patterns of expression could have clinical implications. The aim of this study was to determine differences in miRNAs and gene expression patterns in the different sources of HPCs used in allo-HSCT. Materials and Method: CD34 + cells were isolated by immunomagnetic separation and sorting from 5 healthy donors per type of source: UC, BM and PB mobilized with G-CSF. A pool of samples from PB not mobilized was used as reference group. We analyzed the expression of 375 miRNAs using TaqMan MicroRNA Arrays Human v2.0 (Applied Biosystems), and gene expression using Whole Human Genome Oligo microarray kit 4×44K (Agilent). The expression levels of genes and miRNAs were obtained by the 2-ΔΔCTmethod. From expression data hierarchical clustering was performed using the Euclidean distance. To identify genes and miRNAs differentially expressed between the different sources of HPCs statistical Kruskal Wallis test was applied. All analysis were performed using the Multiexperiment Viewer 4.7.1. The function of the miRNAs and genes of interest was determined from the various databases available online (TAM database, Gene Ontology and TargetScan Human). Results: Forty-two miRNAs differentially expressed between the different sources were identified. As compared to BM or UC, in mobilized PB most miRNAs were overexpressed, including the miRNA family of miR515, which is characteristic of embryonic stem cells. On the other hand, 47 genes differentially expressed between the different sources were identified. Interestingly, a similar pattern of expression was observed between movilized PB and UC as compared to BM. Interestingly, 13 of these genes are targets of the miRNAs also identified in this study, which suggests that their expression might be regulated by these miRNAs. Conclusion: There are significant differences in miRNAs and gene expression levels between the different sources of HPCs Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document