scholarly journals Generation of glucocorticoid resistant SARS-CoV-2 T-cells for adoptive cell therapy

2020 ◽  
Author(s):  
Rafet Basar ◽  
Nadima Uprety ◽  
Emily Ensley ◽  
May Daher ◽  
Kimberly Klein ◽  
...  

SUMMARYAdoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A159-A159
Author(s):  
Michael Whang ◽  
Ming-Hong Xie ◽  
Kate Jamboretz ◽  
Hadia Lemar ◽  
Chao Guo ◽  
...  

BackgroundPeripheral blood natural killer (NK) cells are mature cytotoxic innate lymphocytes possessing an inherent capacity for tumor cell killing, thus making them attractive candidates for adoptive cell therapy. These NK cells are also amenable to CRISPR and chimeric antigen receptor (CAR) genomic engineering for enhanced functions. Moreover, NK cells possess an inherent capacity for off-the-shelf therapy since they are not known to cause graft-versus-host disease, unlike T cells. Presently, approved CAR cell therapy is custom-made from each patient‘s own T cells, a process that can limit patient pool, narrow therapeutic window, and contribute to product variability. In this study, we investigate whether peripheral blood NK cells from a selected donor can be edited, engineered, and expanded sufficiently for off-the-shelf use in a wide patient population.MethodsUsing the CRISPR/Cas9 system, we knocked out CISH expression in isolated peripheral blood NK cells from 3 healthy donors. Subsequently, we expanded edited NK cells by using IL-2 and sequential stimulations using NKSTIM, a modified K562 stimulatory cell line expressing membrane-bound form of IL-15 (mbIL-15) and 4-1BBL. IL-12 and IL-18 were added twice during expansion to drive memory-like NK cell differentiation. We transduced the expanded NK cells to express engineered CD19-targeted CAR and mbIL-15 during an interval between the first and second NKSTIM pulses. We assessed NK cell cytotoxicity against Nalm6 target cells by IncuCyte.ResultsIsolated peripheral blood NK cells from 3 healthy donors were successfully edited using CRISPR/Cas9, engineered to express high levels of CAR, extensively expanded using a series of NKSTIM pulses in the presence of IL-2, and differentiated into memory-like NK cells using IL-12 and IL-18. Interestingly, NK cells from the 3 donors exhibited distinct outcomes. NK cells from one donor reached a peak expansion limit of approximately 7-million-fold before undergoing contraction whereas NK cells from two donors continued to expand over the length of the study surpassing 100-million-fold expansion, without appearing to have reached a terminal expansion limit. At the end of the study, NK cells from one donor exceeded 1-billion-fold expansion and maintained 88% cytolytic activity compared to Nkarta’s standard process control in a 72-hour IncuCyte assay.ConclusionsIn this study, we demonstrate that healthy donor-derived peripheral blood NK cells are capable of expanding over billion-fold while maintaining potency. These results provide a rationale for the development of off-the-shelf CAR NK cell therapies using NK cells from donors selected to provide optimal product characteristics.Ethics ApprovalHuman samples were collected with written informed consent by an approved vendor.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1944-1944
Author(s):  
Rafet Basar ◽  
May Daher ◽  
Nadima Uprety ◽  
Elif Gokdemir ◽  
Abdullah Saleh Alsuliman ◽  
...  

Introduction: A number of Clinical trials have demonstrated the feasibility, safety and efficacy of cell and gene therapy for cancer, autoimmune disorders and infectious disease. Strategies that enhance the function and survival of immune cells are critical for the success of immunotherapy. We have developed a strategy for the ex vivo expansion of off-the-shelf viral-specific T cells (VSRs) from healthy donor buffy coat which have been extremely effective in eradicating refractory cytomegalovirus (CMV), polyomavirus and adenovirus infections in immunocompromised patients. Glucocorticoids commonly used to treat graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) are a common cause of iatrogenically-induced immunosuppression and contribute the risk of life-threatening viral-infections. To render VSTs resistant to the lymphocytotoxic effect of glucocorticoids, we have developed a novel strategy to silence the expression of the glucocorticoid receptor using RNA-guided endonucleases CRISPR (clustered regularly interspaced short palindromic repeats) and CRISPR-associated (Cas) 9 gene editing.. Methods: The technique involves the expansion from donor blood of CMV, BKV or adenoviral-specific T cells using peptide libraries from the immunodominant viral proteins followed by CRISPR knockout of exon 2 of the GR gene on chromosome 5 of the human NR3C1 gene. Cells are electroporated with the RNP (Cas9 plus guide RNA) complex (IDT pre-designed alt-R crispr Cas9 platform) using Neon electroporation and the Amaxa 4-D nucleofector system. Results: GR knockout efficiency in ex vivo expanded virus-specific T cells was consistently > 90%. In vitro experiments confirmed the resistance of VSTs to corticosteroid treatment as assessed by annexin V assay. GR KO VSTs maintained potent antiviral activity as assessed by their ability to proliferate and release effector cytokines in response to viral antigens. Conclusions: CRISPR gene-editing to knock-out the glucocorticoid receptor gene in viral-specific T cells can preserve the activity of VSTs in the presence of corticosteroid-induced immunosuppression. Engineering runs using GMP-compliant Cas9 protein and gRNA are underway in anticipation of a clinical trial. Disclosures Champlin: Sanofi-Genzyme: Research Funding; Actinium: Consultancy; Johnson and Johnson: Consultancy.


2017 ◽  
Vol 40 (3) ◽  
pp. 83-93 ◽  
Author(s):  
Sueon Kim ◽  
Hyun-Jung Sohn ◽  
Hyun-Joo Lee ◽  
Dae-Hee Sohn ◽  
Seung-Joo Hyun ◽  
...  

2010 ◽  
Vol 60 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Huanfa Yi ◽  
Xiaofei Yu ◽  
Chunqing Guo ◽  
Masoud H. Manjili ◽  
Elizabeth A. Repasky ◽  
...  

2021 ◽  
Author(s):  
Moataz Dowaidar

T cells following genome editing and transformation might be detectable in peripheral blood and tumor tissues for a long time, even more than a year. The types and diversity of T-cells in peripheral blood and tumor tissues changed following transfusion of genetically modified T-cells, and some highly suspected T-cells targeting cancer cells grew, increasing the proportion of such cells. Moreover, after getting genetically engineered T cells, anticancer cytokine secretion increased. T cells changed by gene editing have certain functions, at least from an immunological standpoint. The first clinical research using the CRISPR–Cas9 gene editing method for cancer resistance is more complicated: Using CRISPR–Cas9 gene editing technology to concurrently knock out, amplify, activate and reinfuse three genes in human immune cells. This therapeutic strategy is more demanding, because the changed immune cells have a wider target scope. The data suggest that the efficacy of gene editing in immune cells was 15–45%, and the modified cells could survive long in the peripheral blood and tumor tissues of patients. After three or four months, some T-cells became central T-cells. These encouraging findings pave the way for future experimental cancer research utilizing CRISPR technology.


2018 ◽  
Vol 507 (1-4) ◽  
pp. 59-66 ◽  
Author(s):  
Yan Zheng ◽  
Ning Gao ◽  
Yu-Long Fu ◽  
Bing-Yong Zhang ◽  
Xiu-Ling Li ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Weihong Chen ◽  
Xin Du ◽  
Wenyujing Zhou ◽  
Changru Luo ◽  
Xiaoqing LI

CASE PRESENTATION: A 68-year-old male was diagnosed with CLL/SLL in November 2007. Bone marrow asp/bx: 36.5% lymphocytes, 78% CD19, 65% ATM (11q22 deleted) positive cells, 13.5% D13S25 (13q14.3 deleted). On December 10, 2009, the patient took FCR scheme for five cycles, followed by FR scheme for one cycle, and then a month of Chlorambucil. On September 5, 2013, the patient took BR scheme for four cycles with no effect. From March 2015 to Feb 2016, 420 mg of Ibrutinib was administered daily. On January 15, 2016, the patient developed swollen lymph nodes in his right neck with intermittent lumps, fever and nausea. He was admitted into the hospital at Feb 2, 2016. Test results: multiple swollen superficial lymph nodes over the body, with the biggest measuring 60×30mm on the right neck, with no tenderness. Supplementary tests: peripheral white blood cells (WBC) 11.94×10E9/L, lymphocyte 7.5×10E9/L, CD19 cells 6.73×10E9/L, bone marrow lymphocyte 62%, peripheral blood lymphocyte 52%. Immunophenotype: CD5, CD19, CD20dim, CD23, CD11b dim, HLA-DR expression, visible CD5+CD19+ cell clusters, and visible immunoglobulin cKappa with restricted expression. On March 10, 2016, peripheral blood platelet 60 × 10E9/L, CD19 cells 1.94×10E9/L, lactate dehydrogenase 460U/L, FER 115.6ng/ml, hepatitis B virus carrier. Diagnosis: CLL/SLL IV stage, ATM (11q22) deletion, D13S25 (13q14. 3) positive, CD19 positive. Relapse of CLL/SLL occurred again after four months and at this stage the patient was considered for therapy in a clinical trial of CD19-specific chimeric antigen receptor (CAR-) T cell therapy. Ethical approval and informed consent were obtained for anti-CD19 CAR T Cell treatment of ibrutinib resistance in relapsed/refractory CLL/SLL. We infused autologous T cells transduced with a CAR T 19 retroviral vector with CLL/SLL at doses of 3.3 × 10E8 CART19 cells on Mar. 16 2016. Patients were monitored for responses, toxic effects, and the expansion and persistence of circulating CART19 cells. After CART19 cells were infused, the patient experienced chills, fever, headache, weak, anorexia, nausea, shortness of breath, chest tightness, heart palpitation, hypotension and shock for 9 days. The serum levels of IFN-Υ were at their highest at day 7 after CAR T cells infusion. Serum interleukin 6 (IL-6) was at 680pg/ml and CD3+ cells were 97.5%, CD8+ cells 72.8% (18.7-32.8%), FER was 1529.5ng/ml (Normal No. 22-322ng/ml) 14 days after CAR-T cell infusion. The serum levels of IL-6 were at their highest at day14. The patient was diagnosed as having cytokine release syndrome. After the patient took the anti-IL-6R antibody and anti-TNF antibody, he began to recover gradually. Enlarge lymph nodes shrunk after being infused with CART19 cells for 7 days. The peripheral blood CD19 B lymphocytes were 0 on day 14 after infused with CAR T19 cells. Q-PCR was used to detect the amount of the peripheral blood CART19 cells, which stood at 5485 copies/μl, 924 copies/μl, 191 copies/μl respectively 2 weeks, 6 weeks and 3 months after infusing with CART19 cells. The peripheral blood CART 19 cells were not detectable 4 months after infusing with CART19 cells until present. The lymphadenopathy was decreased gradually after 14 days of infusion. The MRI test showed that lymphadenopathy reduced markedly or disappeared after 6 months of infusion. ATM (11q22 deleted) negative, D13S25 (13q14.3 deleted) negative. After treatment with CAR T 19 cell therapy for 53 months, the patient remained disease-free, the patient's lymph nodes, lymphocytes and I mmunoglobulins were normal. CONCLUSIONS : Cancer immunotherapy as a method of cancer treatment is the most effective after conventional treatments such as radiotherapy, chemotherapy, and surgery. For BTK Inhibitor resistance in relapsed and refractory CD19+ CLL/SLL, CD19 is a favorable target, because the expression of CD19 is limited to B cells and not present in other tissues or cells. Currently, the efficacy of this treatment in treating CLL/SLL remains to be seen. The effects of chemotherapy on the patient's B cell lymphoma are negligible, due to the fact that his CLL/SLL have become relapsed and refractory. As a result we chose the CAR T19 cell therapy genetic engineering technique as a method of treatment, to which the patient has responded well. Therefor, CAR T cell technology overcome the limitations of existing cancer therapies and has great potential for development and application. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document