scholarly journals Transferrin receptor (Tfr1) ablation in satellite cells impacts skeletal muscle regeneration through the activation of ferroptosis

2020 ◽  
Author(s):  
Hongrong Ding ◽  
Shujie Chen ◽  
Xiaohan Pan ◽  
Xiaoshuang Dai ◽  
Guihua Pan ◽  
...  

AbstractSatellite cells (SCs) are critical to the postnatal development and skeletal muscle regeneration. Inactivation of SCs is linked with the skeletal muscle loss. Leveraging on the RNAseq screening, transferrin receptor (Tfr1) is identified to be associated with muscle/SC ageing and the declined regeneration potential. Muscle-specific deletion of Tfr1 results in the growth retardation, metabolic disorder and lethality, shedding light on the importance of Tfr1 in skeletal muscle physiology. Here, our investigation reported that conditional SC-ablation of Tfr1 leads to the SCs inactivation and skeletal muscle regeneration defects, followed by the labile iron accumulation, de novo lipogenesis via fibroadipogenic progenitors (FAPs) and Gpx4/Nrf2-mediated ROS-scavenger defects. These abnormal phenomena, such as Hmox1-mediated myoglobin degradation, Tfr1-Slc39a14 functional switch and the activation of unsaturated fatty acid biosynthesis pathway are orchestrated with the occurrence of ferroptosis in skeletal muscle. Ferroptosis may further prevent SC proliferation and skeletal muscle regeneration. Ferrostatin-1, a ferroptosis inhibitor could not rescue Tfr1-ablation induced ferroptosis. However, intramuscular administration of lentivirus expressing Tfr1 could partially reduce labile iron accumulation, decrease de novo lipogenesis and promote skeletal muscle regeneration. Most importantly, Tfr1/Slc39a14 functional switch, labile iron accumulation and fatty acid biosynthesis are recapitulated in aged skeletal muscle of rodents, indicating that ferroptosis occurs in the skeletal muscles of aged rodents. The present study also bridges the gap between pathogenesis of iron and functional defects in the skeletal muscle, providing mechanistic information to develop anti-aging strategies.One Sentence SummaryConditional ablation of Tfr1 in satellite cells (SCs) results in the SC inactivation, skeletal muscle regeneration defects, labile iron accumulation, and unsaturated fatty acid biosynthesis, leading to the activation of ferroptosis, which is recapitulated in skeletal muscles of aged rodents to be a new cell death form identified in skeletal muscle and sheds light on the development of novel anti-ageing strategies.

1991 ◽  
Vol 81 (2) ◽  
pp. 251-255
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

1966 ◽  
Vol 53 (7) ◽  
pp. 638-642 ◽  
Author(s):  
J. C. T. Church ◽  
R. F. X. Noronha ◽  
D. B. Allbrook

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tannaz Norizadeh Abbariki ◽  
Zita Gonda ◽  
Denise Kemler ◽  
Pavel Urbanek ◽  
Tabea Wagner ◽  
...  

AbstractThe process of myogenesis which operates during skeletal muscle regeneration involves the activation of muscle stem cells, the so-called satellite cells. These then give rise to proliferating progenitors, the myoblasts which subsequently exit the cell cycle and differentiate into committed precursors, the myocytes. Ultimately, the fusion of myocytes leads to myofiber formation. Here we reveal a role for the transcriptional co-regulator nTRIP6, the nuclear isoform of the LIM-domain protein TRIP6, in the temporal control of myogenesis. In an in vitro model of myogenesis, the expression of nTRIP6 is transiently up-regulated at the transition between proliferation and differentiation, whereas that of the cytosolic isoform TRIP6 is not altered. Selectively blocking nTRIP6 function results in accelerated early differentiation followed by deregulated late differentiation and fusion. Thus, the transient increase in nTRIP6 expression appears to prevent premature differentiation. Accordingly, knocking out the Trip6 gene in satellite cells leads to deregulated skeletal muscle regeneration dynamics in the mouse. Thus, dynamic changes in nTRIP6 expression contributes to the temporal control of myogenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ermelinda Ceco ◽  
Diego Celli ◽  
Samuel Weinberg ◽  
Masahiko Shigemura ◽  
Lynn C. Welch ◽  
...  

Muscle dysfunction often occurs in patients with chronic obstructive pulmonary diseases (COPD) and affects ventilatory and non-ventilatory skeletal muscles. We have previously reported that hypercapnia (elevated CO2 levels) causes muscle atrophy through the activation of the AMPKα2-FoxO3a-MuRF1 pathway. In the present study, we investigated the effect of normoxic hypercapnia on skeletal muscle regeneration. We found that mouse C2C12 myoblasts exposed to elevated CO2 levels had decreased fusion index compared to myoblasts exposed to normal CO2. Metabolic analyses of C2C12 myoblasts exposed to high CO2 showed increased oxidative phosphorylation due to increased fatty acid oxidation. We utilized the cardiotoxin-induced muscle injury model in mice exposed to normoxia and 10% CO2 for 21 days and observed that muscle regeneration was delayed. High CO2-delayed differentiation in both mouse C2C12 myoblasts and skeletal muscle after injury and was restored to control levels when cells or mice were treated with a carnitine palmitoyltransfearse-1 (CPT1) inhibitor. Taken together, our data suggest that hypercapnia leads to changes in the metabolic activity of skeletal muscle cells, which results in impaired muscle regeneration and recovery after injury.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3028
Author(s):  
Paulina Roux-Biejat ◽  
Marco Coazzoli ◽  
Pasquale Marrazzo ◽  
Silvia Zecchini ◽  
Ilaria Di Renzo ◽  
...  

Skeletal muscle regeneration is a complex process involving crosstalk between immune cells and myogenic precursor cells, i.e., satellite cells. In this scenario, macrophage recruitment in damaged muscles is a mandatory step for tissue repair since pro-inflammatory M1 macrophages promote the activation of satellite cells, stimulating their proliferation and then, after switching into anti-inflammatory M2 macrophages, they prompt satellite cells’ differentiation into myotubes and resolve inflammation. Here, we show that acid sphingomyelinase (ASMase), a key enzyme in sphingolipid metabolism, is activated after skeletal muscle injury induced in vivo by the injection of cardiotoxin. ASMase ablation shortens the early phases of skeletal muscle regeneration without affecting satellite cell behavior. Of interest, ASMase regulates the balance between M1 and M2 macrophages in the injured muscles so that the absence of the enzyme reduces inflammation. The analysis of macrophage populations indicates that these events depend on the altered polarization of M1 macrophages towards an M2 phenotype. Our results unravel a novel role of ASMase in regulating immune response during muscle regeneration/repair and suggest ASMase as a supplemental therapeutic target in conditions of redundant inflammation that impairs muscle recovery.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Anirban Roy ◽  
Meiricris Tomaz da Silva ◽  
Raksha Bhat ◽  
Kyle R Bohnert ◽  
Takao Iwawaki ◽  
...  

Skeletal muscle regeneration is regulated by coordinated activation of multiple signaling pathways activated in both injured myofibers and satellite cells. The unfolded protein response (UPR) is a major mechanism that detects and alleviates protein-folding stresses in ER. However, the role of individual arms of the UPR in skeletal muscle regeneration remain less understood. In the present study, we demonstrate that IRE1α (also known as ERN1) and its downstream target, XBP1, are activated in skeletal muscle of mice upon injury. Myofiber-specific ablation of IRE1 or XBP1 in mice diminishes skeletal muscle regeneration that is accompanied with reduced number of satellite cells and their fusion to injured myofibers. Ex vivo cultures of myofiber explants demonstrate that ablation of IRE1α reduces the proliferative capacity of myofiber-associated satellite cells. Myofiber-specific deletion of IRE1α dampens Notch signaling and canonical NF-kB pathway in skeletal muscle of mice. Our results also demonstrate that targeted ablation of IRE1α reduces skeletal muscle regeneration in the mdx mice, a model of Duchenne muscular dystrophy. Collectively, our results reveal that the IRE1α-mediated signaling promotes muscle regeneration through augmenting the proliferation of satellite cells in a cell non-autonomous manner.


1992 ◽  
Vol 47 (5-6) ◽  
pp. 382-386 ◽  
Author(s):  
Bernd List ◽  
Andrea Golz ◽  
Wilhelm Boland ◽  
Hartmut K. Lichtenthaler

The antibiotic cerulenin was shown to be a potent dose-dependent inhibitor of de novo fattyacid biosynthesis in intact isolated chloroplasts of different plants (measured as [14C]acetate incorporation into the total fatty-acid fraction). Various chemical derivatives of cerulenin were synthesized and tested in the chloroplast assay-system of oat, spinach and pea. Modifications of the hydrocarbon chain of cerulenin (e.g. tetrahydro-cerulenin and its short-chain cis-2,3-epoxy-4-oxoheptanamide derivative) decreased the inhibitory activity of cerulenin, whereas variations of the epoxy-oxo-amide structural element led to a complete loss of inhibition potency. The results indicate that the naturally occurring antibiotic cerulenin is the most active specific inhibitor of de novo fatty-acid biosynthesis, but the formation of the hydroxylactam ring seems to be an essential requirement for the inhibitory activity. Those structural analogues of cerulenin, which can no longer form a hydroxylactam ring, do not possess any inhibitory capacity.


1963 ◽  
Vol 41 (1) ◽  
pp. 1267-1274
Author(s):  
Peter F. Hall ◽  
Edward E. Nishizawa ◽  
Kristen B. Eik-Nes

The fatty acids palmitic, palmitoleic, stearic, and oleic have been isolated from rabbit testis and evidence for the synthesis of palmitic and stearic acids de novo from acetate-1-C14is presented. ICSH did not produce demonstrable stimulation of the synthesis of these acids in vitro although the hormone stimulated the production of testosterone-C14by the same tissue. Adrenal tissue was shown to contain palmitic, stearic, and oleic acids, and ACTH did not increase the incorporation of acetate-1-C14into a fatty acid fraction extracted following incubation of adrenal tissue in the presence of this substrate. Fatty acid biosynthesis, therefore, is probably not influenced by the mechanisms by which tropic hormones increase steroid formation.


2011 ◽  
Vol 195 (1) ◽  
pp. 147-163 ◽  
Author(s):  
Michelle J. Doyle ◽  
Sheng Zhou ◽  
Kathleen Kelly Tanaka ◽  
Addolorata Pisconti ◽  
Nicholas H. Farina ◽  
...  

Skeletal muscle contains progenitor cells (satellite cells) that maintain and repair muscle. It also contains muscle side population (SP) cells, which express Abcg2 and may participate in muscle regeneration or may represent a source of satellite cell replenishment. In Abcg2-null mice, the SP fraction is lost in skeletal muscle, although the significance of this loss was previously unknown. We show that cells expressing Abcg2 increased upon injury and that muscle regeneration was impaired in Abcg2-null mice, resulting in fewer centrally nucleated myofibers, reduced myofiber size, and fewer satellite cells. Additionally, using genetic lineage tracing, we demonstrate that the progeny of Abcg2-expressing cells contributed to multiple cell types within the muscle interstitium, primarily endothelial cells. After injury, Abcg2 progeny made a minor contribution to regenerated myofibers. Furthermore, Abcg2-labeled cells increased significantly upon injury and appeared to traffic to muscle from peripheral blood. Together, these data suggest an important role for Abcg2 in positively regulating skeletal muscle regeneration.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1479
Author(s):  
Karolina Archacka ◽  
Joanna Bem ◽  
Edyta Brzoska ◽  
Areta M. Czerwinska ◽  
Iwona Grabowska ◽  
...  

Under physiological conditions skeletal muscle regeneration depends on the satellite cells. After injury these cells become activated, proliferate, and differentiate into myofibers reconstructing damaged tissue. Under pathological conditions satellite cells are not sufficient to support regeneration. For this reason, other cells are sought to be used in cell therapies, and different factors are tested as a tool to improve the regenerative potential of such cells. Many studies are conducted using animal cells, omitting the necessity to learn about human cells and compare them to animal ones. Here, we analyze and compare the impact of IL-4 and SDF-1, factors chosen by us on the basis of their ability to support myogenic differentiation and cell migration, at mouse and human adipose tissue-derived stromal cells (ADSCs). Importantly, we documented that mouse and human ADSCs differ in certain reactions to IL-4 and SDF-1. In general, the selected factors impacted transcriptome of ADSCs and improved migration and fusion ability of cells in vitro. In vivo, after transplantation into injured muscles, mouse ADSCs more eagerly participated in new myofiber formation than the human ones. However, regardless of the origin, ADSCs alleviated immune response and supported muscle reconstruction, and cytokine treatment enhanced these effects. Thus, we documented that the presence of ADSCs improves skeletal muscle regeneration and this influence could be increased by cell pretreatment with IL-4 and SDF-1.


Sign in / Sign up

Export Citation Format

Share Document